Skip to main content
Log in

Friction Stir Processing of Mild Steel/Al2O3 Nanocomposite: Modeling and Experimental Studies

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Parameters of the friction stir processing of mild steel plates were correlated with microhardness of the stir zone using artificial neural network (ANN) modeling and experimental methods. For this purpose, the number of passes, rotational speed, traverse speed, and addition of nano-sized Al2O3 powder were considered as input parameters for the ANN model, while microhardness of the center of the stir zone was obtained as the output. To examine the accuracy and capability of the model in predicting the microhardness, the effects of all ANN input parameters on the microhardness were also examined experimentally with and without the addition of Al2O3 nanopowder. For the surface nanocomposites produced, increase in the number of passes and rotation speed led to increased microhardness values, whereas higher traverse speed resulted firstly in a rise in microhardness followed by a decreased microhardness. Using optical and scanning electron microscopy, the variations in microhardness were closely discussed based on the microstructural changes. Experimental results proved to show excellent conformity with the ANN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Tillmann, E. Vogli, J. Nebel, Development of detonation flame sprayed Cu-base coatings containing large ceramic particles. J. Therm. Spray Technol. 16, 751–758 (2007)

    Article  Google Scholar 

  2. W. Tillmann, E. Vogli, R. Rechlin, F.W. Bach, K. Mohwald, Z. Babiak, Th Rothardt, Manufacturing diamond impregnated tools for stone machining through thermal spraying. Adv. Technol. Appl. ASM Int. 36, 4–8 (2004)

    Google Scholar 

  3. J. Gandra, R. Miranda, P. Vilaça, A. Velhinho, J. Pamies Teixeira, Producing functionally graded materials by friction stir processing. J. Mater. Process. Technol. 211, 1659–1668 (2011)

    Article  Google Scholar 

  4. R.M. Miranda, T.G. Santos, J. Gandra, N. Lopes, R.J.C. Silva, Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys. J. Mater. Process. Technol. 213, 1609–1615 (2013)

    Article  Google Scholar 

  5. S.F. Kashani-Bozorg, K. Jazayeri, Formation of Al/B4C surface nano-composite layers on 7075 Al alloy employing friction stir processing. AIP Conf. Proc. 1136, 715–719 (2008)

    Google Scholar 

  6. M. Azizieh, A.H. Kokabi, P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater. Des. 32, 2034–2041 (2011)

    Article  Google Scholar 

  7. M. Barmouz, M.K. Besharati Givi, J. Seyfi, On the role of processing parameters in producing Cu/Sic metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater. Charact. 62, 108–117 (2011)

    Article  Google Scholar 

  8. A. Shamsipur, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, The effects of friction-stir process parameters on the fabrication of Ti/Sic nano-composite surface layer. Surf. Coat. Technol. 206, 1372–1381 (2011)

    Article  Google Scholar 

  9. F.Y. Tsai, P.W. Kao, Improvement of mechanical properties of a cast Al–Si base alloy by friction stir processing. Mater. Lett. 80, 40–42 (2012)

    Article  Google Scholar 

  10. M. Zohoor, M.K. Besharati Givi, P. Salami, Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater. Des. 39, 358–365 (2012)

    Article  Google Scholar 

  11. M. Salehi, M. Saadatmand, J. Aghazadeh-Mohandesi, Optimization of process parameters for producing AA6061/Sic nanocomposites by friction stir processing. Trans. Nonferrous Met. Soc. China. 22, 1055–1063 (2012)

    Article  Google Scholar 

  12. H. Okuyucu, A. Kurt, E. Arcaklioglu, Artificial neural network application to the friction stir welding of aluminum plates. Mater. Des. 28, 78–84 (2007)

    Article  Google Scholar 

  13. M.H. Shojaeefard, R.A. Behnagh, M. Akbari, M.K. Givi, F. Farhani, Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater. Des. 44, 90–198 (2013)

    Article  Google Scholar 

  14. R. Koker, N. Altinkok, A. Demir, Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater. Des. 28, 616–627 (2007)

    Article  Google Scholar 

  15. G. Buffa, L. Fratini, F. Micari, A Neural network based approach for the design of FSW processes. Key Eng. Mater. 410–411, 413–420 (2009)

    Article  Google Scholar 

  16. A. Ebnonnasir, F. Karimzadeh, M.H. Enayati, Novel artificial neural network model for evaluating hardness of stir zone of submerge friction stir processed. Mater. Sci. Technol. 27, 990–995 (2011)

    Article  Google Scholar 

  17. J. Liu, H. Chang, T.Y. Hsu, X. Ruan, Prediction of the flow stress of high-speed steel during hot deformation using a BP artificial neural network. J. Mater. Proc. Technol. 103, 200–205 (2000)

    Article  Google Scholar 

  18. Y. Yan, M. Wan, H.B. Wang, L. Huang, Optimization of Press bend forming path of aircraft integral panel. Trans. Nonferrous Met. Soc. China 20, 294–301 (2010)

    Article  Google Scholar 

  19. O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, N. Haghdadi, Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy. Mater. Des. 39, 390–396 (2012)

    Article  Google Scholar 

  20. H. Rumpf, The strength of granules and agglomerates, in Agglomeration, ed. by W.A. Knepper (Wiley-Interscience, New York, 1962), p. 379

  21. J. Tomas, Adhesion of ultrafine particles energy absorption at contact. Chem. Eng. Sci. 62, 5925–5939 (2007)

    Article  Google Scholar 

  22. C. Hamilton, S. Dymek, M. Blicharski, A model of material flow during friction stir welding. Mater. Charact. 59, 1206–1214 (2008)

    Article  Google Scholar 

  23. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux, Mechanical and thermal modelling of friction stir welding. J. Mater. Proc. Technol. 171, 348–357 (2006)

    Article  Google Scholar 

  24. R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues, P. Vilaca, Material flow in heterogeneous friction stir welding of thin aluminium sheets: effect of shoulder geometry. Mater. Sci. Eng. A 498, 384–391 (2008)

    Article  Google Scholar 

  25. S. Sato, T.W. Nelson, C.J. Sterling, recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 53, 637–645 (2005)

    Article  Google Scholar 

  26. Y.D. Chung, H. Fujii, K. Nakata, K. Nogi, Friction stir welding of high carbon tool steel (SK85) below eutoctoid temperature. Trans. JWRI 38, 37–41 (2009)

    Google Scholar 

  27. B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy. Mater. Proc. Technol. 191, 77–81 (2007)

    Article  Google Scholar 

  28. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater. Sci. Eng. A 433, 50–54 (2006)

    Article  Google Scholar 

  29. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels. Mater. Sci. Eng. A 429, 50–57 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from University of Tehran and Iran Nanotechnology Initiative Council are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ghasemi-Kahrizsangi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi-Kahrizsangi, A., Kashani-Bozorg, S.F., Moshref-Javadi, M. et al. Friction Stir Processing of Mild Steel/Al2O3 Nanocomposite: Modeling and Experimental Studies. Metallogr. Microstruct. Anal. 4, 122–130 (2015). https://doi.org/10.1007/s13632-015-0193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0193-5

Keywords

Navigation