Skip to main content

Advertisement

Log in

Eco-friendly management of citrus nematode (Tylenchulus semipenetrans) using ozone, copper sulphate and calcium sulphate and its impact on productivity of lemon trees

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Safety concerns necessitate the search for alternative ecologically friendly methods of pest management while simultaneously increasing productivity. From this point of view, a field experiment on Eureka Lemon (Citrus limon L) trees was undertaken with the goal of reducing the usage of nematicides and enhancing lemon tree productivity. In this study, ozone was used either alone or in combination with copper sulphate or calcium sulphate to control the citrus nematode, Tylenchulus semipenetrans. The single treatments of the three compounds and the combined applications significantly affected T. semipenetrans infection, enhanced the nutritional status of lemon trees and increased fruit set and yield. The combined applications were more effective than the individual ones, with ozone + calcium sulphate yielding the maximum values of fruit physical (fruit volume, length, diameter and weight) and chemical (TSS, the TSS/acidity ratio and Vitamin C) characteristics while reducing the acidity. There were no significant differences in the impact on citrus nematode between the combined applications and ozone treatment. The application of ozone + copper sulphate significantly reduced the final nematode populations and the reproduction factor. Thus, ozone + calcium sulphate and ozone + copper sulphate are potential alternatives to nematicides for managing citrus nematodes and increasing the yield and quality of Eureka lemon trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-Elgawad MMM (2020) Managing nematodes in Egyptian citrus orchards. Bull Natl Res Cent 44:41. https://doi.org/10.1186/s42269-020-00298-9

    Article  Google Scholar 

  • Abd-Elgawad MMM, Koura FFH, Montasser SA, Hammam MMA (2016) Distribution and losses of Tylenchulus semipenetrans in citrus orchards on reclaimed land in Egypt. Nematology 18:1141–1150. https://doi.org/10.1163/15685411-00003020

    Article  Google Scholar 

  • Abdel-Sattar M, Haikal AM, Hammad SE (2020) Meloidogyne incognita population control and nutritional status and productivity of Thompson seedless grapevines managed with different treatments. PLoS ONE 15:e0239993. https://doi.org/10.1371/journal.pone.0239993

    Article  CAS  Google Scholar 

  • Ahuja A, Somvanshi VS (2021) Diagnosis of plant-parasitic nematodes using loop-mediated isothermal amplification (LAMP): a review. Crop Prot 147:105459. https://doi.org/10.1016/j.cropro.2020.105459

    Article  CAS  Google Scholar 

  • Al-Sayed AA, Abdel-Rahman AA, Kesba HH (2016) Ring and spiral nematodes reproduction and Turfgrass growth as influenced by heavy metals treatments. Ann Plant Protect Sci 24:411–417

    Google Scholar 

  • Ansari T, Asif M, Siddiqui MA (2016) Potential of botanicals for root-knot nematode management on tomato: root-knot nematode Meloidogyne incognita management through organic amendment. LAP LAMBERT Academic Publishing, New York

    Google Scholar 

  • AOAC (2005) Association of official analytical chemists. Official method of analysis, 18th edn., Gaithersburg Maryland, USA

  • Arora G, Saxena R (2003) Effect of copper sulphate on beet-root, Beta vulgaris infested with Meloidogyne incognita. Indian J Nematol 33:143–145

    Google Scholar 

  • Bairwa A, Venkatasalam EP, Priyank HM, Sharma S (2021) Introduction of potato cyst nematodes, life cycle and their management through biobased amendments. In: Kaushal M, Prasad R (eds) Microbial biotechnology in crop protection. Springer, Berlin, pp 79–95

    Google Scholar 

  • Bargmann CI, Mori I (1997) Chemotaxis and thermotaxis. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C elegans II, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 717–738

    Google Scholar 

  • Behlau F, Belasque J Jr, Graham JH, Leite RP Jr (2010) Effect of frequency of copper applications on control of citrus canker and the yield of young bearing sweet orange trees. Crop Prot 29:300–305

    Article  CAS  Google Scholar 

  • Boswell CC (1997) Dryland lucerne responses to elemental sulphur of different particle sizes applied at different rates and frequencies in North Otago, New Zealand. N Z J Agric Res 40:283–295

    Article  CAS  Google Scholar 

  • Carter MR (ed) (1993) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Chen PM, Mellenthin WM (1981) Effects of harvest date on ripening capacity and postharvest life of’d’Anjou’pears. J Am Soc Hortic Sci 106:38–42

    Article  Google Scholar 

  • de Melo S-G, Dias-Arieira CR, Roldi M et al (2013) Mineral nutrition in the control of nematodes. Afr J Agric Res 8:2413–2420

    Google Scholar 

  • Dong X, Hu Y, Li Y, Zhou Z (2019) The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: a negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci Hortic 243:281–289. https://doi.org/10.1016/j.scienta.2018.08.036

    Article  CAS  Google Scholar 

  • Du Plessis SF, Koen TJ (1992) Leaf analysis norms for lemons [Citrus limon (L.) Burm]. In: Tribulato E, Gentile A, Refergiato G (eds) Proceedings of seventh international citrus congress, vol 2. International Society of Citriculture, Acireale, pp 551–552

  • Duncan L, Shen H, Gelaye B et al (2019) Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun 10:3328. https://doi.org/10.1038/s41467-019-11112-0

    Article  CAS  Google Scholar 

  • Eloh K, Demurtas M, Mura MG et al (2016) Potent nematicidal activity of maleimide derivatives on Meloidogyne incognita. J Agric Food Chem 64:4876–4881

    Article  CAS  Google Scholar 

  • El-Sherif AG, Gad SB, Saadoon SM (2014) Effect of plant mineral nutrition on tomato plant infected with Meloidogyne incognita under greenhouse conditions. Egypt J Agronematol 13:44–53. https://doi.org/10.21608/ejaj.2014.63630

    Article  Google Scholar 

  • El-Sherif AG, Gad SB, Saadoon SM (2015) Evaluation of calcium sulphate, potassium silicate and moringa dry leaf powder on Meloidogyne incognita infecting tomato plant with reference to N, P, K, total phenol and chlorophyll status under greenhouse condition. J Entomol Nematol 7:30–38. https://doi.org/10.5897/JEN2015.0125

    Article  Google Scholar 

  • Ennab H (2016) Effect of organic manures, biofertilizers and NPK on vegetative growth, yield, fruit quality and soil fertility of Eureka lemon trees (Citrus limon (L.) Burm). J Soil Sci Agric Eng 7:767–774. https://doi.org/10.21608/jssae.2016.40472

    Article  Google Scholar 

  • Eticha D, Kwast A, de Chiachia TRS et al (2017) Calcium nutrition of orange and its impact on growth, nutrient uptake and leaf cell wall. Citrus Res Technol 38:62–70. https://doi.org/10.4322/crt.ICC096

    Article  Google Scholar 

  • Evenhuis B, Waard PW (1976) Nitrogen determination. Agriculture Research. Royal Tropical Ins, Amesterdam

    Google Scholar 

  • García-Salas P, Gómez-Caravaca AM, Arráez-Román D et al (2013) Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chem 141:869–878. https://doi.org/10.1016/j.foodchem.2013.02.124

    Article  CAS  Google Scholar 

  • González-Molina E, Domínguez-Perles R, Moreno DA, García-Viguera C (2010) Natural bioactive compounds of Citrus limon for food and health. J Pharm Biomed Anal 51:327–345. https://doi.org/10.1016/j.jpba.2009.07.027

    Article  CAS  Google Scholar 

  • Govani AHN, Lam AH, Pacis M, Tan MT (2013) Effect of different concentrations of copper sulphate on the speed of Caenorhabditis elegans. The Expedition 3: 1–15

  • Han Y, Floros JD, Linton RH et al (2002) Response surface modeling for inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum) by ozone gas treatment. J Food Sci 67:1188–1193. https://doi.org/10.1111/j.1365-2621.2002.tb09475.x

    Article  CAS  Google Scholar 

  • Huber DM, Haneklaus S (2007) Managing nutrition to control plant disease. Landbauforschung Volkenrode 57:313–322

    CAS  Google Scholar 

  • Hurchanik D, Schmitt DP, Hue NV, Sipes BS (2003) Relationship of Meloidogyne konaensis population densities to nutritional status of coffee roots and leaves. Nematropica 33:55–64

    Google Scholar 

  • Jackson K (1958) Soil chemical analysis, vol 498. Prentice Hall, Englewood Cliffs, pp 183–204

    Google Scholar 

  • Karuri H (2022) Root and soil health management approaches for control of plant-parasitic nematodes in sub-Saharan Africa. Crop Prot 152:105841. https://doi.org/10.1016/j.cropro.2021.105841

    Article  Google Scholar 

  • Khanal C, Harshman D (2022) Evaluation of summer cover crops for host suitability of Meloidogyne enterolobii. Crop Prot 151:105821. https://doi.org/10.1016/j.cropro.2021.105821

    Article  Google Scholar 

  • Kumar V, Bhat AK, Sharma V et al (2015) Effect of different mulches on soil moisture, growth and yield of Eureka lemon (Citrus limon Burm) under rainfed condition. Ind Jour of Dryl Agri Rese and Deve 30:83–88. https://doi.org/10.5958/2231-6701.2015.00013.5

    Article  Google Scholar 

  • Landa Fernández IA, Monje-Ramirez I, Ledesma O, de Velásquez MT (2019) Tomato crop improvement using ozone disinfection of irrigation water. Ozone Sci Eng 41:398–403. https://doi.org/10.1080/01919512.2018.1549474

    Article  CAS  Google Scholar 

  • Lemic D, Jembrek D, Bažok R, Pajač Živković I (2019) Ozone effectiveness on wheat weevil suppression: preliminary research. Insects 10:357. https://doi.org/10.3390/insects10100357

    Article  Google Scholar 

  • Leoni C, Rossing WAH, van Bruggen AHC (2015) Crop rotation in organic agriculture. In: Finckh M, van Bruggen AHC, Tamm L (eds) Plant diseases and their management in organic agriculture. American Phytopathological Society Press, St. Paul, Minnesota, p 402

    Google Scholar 

  • Liu YQ, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Saf 11:530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x

    Article  CAS  Google Scholar 

  • Mashock MJ, Zanon T, Kappell AD et al (2016) Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans. PLoS ONE 11:e0167613. https://doi.org/10.1371/journal.pone.0167613

    Article  CAS  Google Scholar 

  • McSorley R (1987) Extraction of nematodes and sampling methods. In: Brown RH, Kerry BR (eds) Principles and practices of nematode control in crops. Academic Press, Marrickville, pp 13–47

    Google Scholar 

  • Mir AR, Pichtel J, Hayat S (2021) Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals 34:737–759

    Article  CAS  Google Scholar 

  • Mitsugi F, Nagatomo T, Takigawa K et al (2014) Properties of soil treated with ozone generated by surface discharge. IEEE Trans Plasma Sci 42:3706–3711. https://doi.org/10.1109/TPS.2014.2350533

    Article  CAS  Google Scholar 

  • Msayleb N, Kanwar R, Wu H, van Leeuwen J (2017) Soil ozonation for nematode disinfestation as an alternative to methyl bromide and nematicides. Sci Pages Environ Stud 1:11–19

    Google Scholar 

  • Mulla MS, Norland LR, Fanara DM et al (1971) Control of Chironomid midges in recreational lakes. J Econ Entomol 64:300–307

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL et al (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43. https://doi.org/10.1007/978-94-007-0434-3_2

    Chapter  Google Scholar 

  • Oostenbrink M (1966) Major characteristics of the relation between nematodes and plants. Mededelingen Landbouwhogeschool Wageningen 66:3–46

    Google Scholar 

  • Pawłat J, Stryczewska HD, Ebihara K (2010) Sterilization techniques for soil remediation and agriculture based on ozone and AOP. J Adv Oxidat Technol 13:138–145

    Google Scholar 

  • Prigigallo MI, Melillo MT, Bubici G et al (2019) Ozone treatments activate defence responses against Meloidogyne incognita and Tomato spotted wilt virus in tomato. Pest Manag Sci 75:2251–2263. https://doi.org/10.1002/ps.5362

    Article  CAS  Google Scholar 

  • Qiao K, Liu Q, Zhang S (2021) Evaluation of fluazaindolizine, a new nematicide for management of Meloidogyne incognita in squash in calcareous soils. Crop Prot 143:105469. https://doi.org/10.1016/j.cropro.2020.105469

    Article  CAS  Google Scholar 

  • Qiu JJ, Westerdahl BB, Pryor A (2009) Reduction of root-knot nematode, Meloidogyne javanica, and ozone mass transfer in soil treated with ozone. J Nematol 41:241–246

    CAS  Google Scholar 

  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biol Fertil Soils 48:463–468. https://doi.org/10.1007/s00374-011-0632-7

    Article  CAS  Google Scholar 

  • Rather BA, Masood A, Sehar Z et al (2020) Mechanisms and role of nitric oxide in phytotoxicity-mitigation of copper. Front Plant Sci 11:675. https://doi.org/10.3389/fpls.2020.00675

    Article  Google Scholar 

  • Rawal S (2020) A review on root-knot nematode infestation and its management practices through different approaches in tomato. Trop Agroecosyst 1:92–96. https://doi.org/10.26480/taec.02.2020.92.96

    Article  Google Scholar 

  • Remondino M, Valdenassi L (2018) Different uses of ozone: environmental and corporate sustainability. Lit Rev Case Study Sustainab 10:4783. https://doi.org/10.3390/su10124783

    Article  Google Scholar 

  • Reuveni R, Reuveni M (1998) Foliar-fertilizer therapy—a concept in integrated pest management. Crop Prot 17:111–118

    Article  CAS  Google Scholar 

  • Rumiani M, Hamhehzarghani H, Karegar A, Ghaderi R (2021) Optimization of citrus tree sampling pattern for estimating population of citrus nematode in the soil of infested orchards in Fars province, southern Iran. Crop Prot 142:105523. https://doi.org/10.1016/j.cropro.2020.105523

    Article  Google Scholar 

  • Saeedizadeh A, Niasti F, Ameri-Bafghi ME, Agahi K (2019) Response of root-knot nematode Meloidogyne javanica to ozone. Ciência e Agrotecnologia 43:e008419. https://doi.org/10.1590/1413-7054201943008419

    Article  CAS  Google Scholar 

  • Shokoohi E, Duncan LW (2018) Nematode parasites of citrus. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, pp 446–476

    Chapter  Google Scholar 

  • Snedecor GW, Cochran WG (1990) Statistical Methods, 7th edn. The Iowa State University Press, Ames, p 593

    Google Scholar 

  • Solac I, Bloem E, Haneklaus S, Schnug E (2003) Sulphur induced resistance (SIR). Nawozy i Nawożenie 5:206–212

    Google Scholar 

  • Southey JF (1986) Laboratory methods for work with plant and soil nematodes, 6th edn. Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationery Office, London, pp 202

  • Tabarant P, Villenave C, Risède JM et al (2011) Effects of organic amendments on plant-parasitic nematode populations, root damage, and banana plant growth. Biol Fertil Soils 47:341–347. https://doi.org/10.1007/s00374-011-0541-9

    Article  Google Scholar 

  • Tan QQ, Wu HY, Jiang SX, Bing H (2013) Mortality and movement behaviour of Bursaphelenchus xylophilus under different dosages of copper sulphate. Plant Protect Sci 49:98–103. https://doi.org/10.17221/39/2012-PPS

    Article  CAS  Google Scholar 

  • Troemel ER (1999) Chemosensory receptors in Caenorhabditis elegans. University of California, San Francisco

    Google Scholar 

  • van Bruggen AHC, Semenov AM (2015) Soilborne fungal and bacterial diseases. In: Finckh MR, van Bruggen AHC, Tamm L (eds) Plant diseases and their management in organic agriculture. APS Press, St. Paul, pp 67–89

    Google Scholar 

  • van Bruggen AHC, Narouei-Khandan HA, Gravel V, Blok WJ (2016) Corky root severity, root knot nematode galling and microbial communities in soil, rhizosphere and rhizoplane in organic and conventional greenhouse compartments. Appl Soil Ecol 100:112–123. https://doi.org/10.1016/j.apsoil.2015.11.015

    Article  Google Scholar 

  • Veronico P, Paciolla C, Sasanelli N et al (2017) Ozonated water reduces susceptibility in tomato plants to Meloidogyne incognita by the modulation of the antioxidant system. Mol Plant Pathol 18:529–539. https://doi.org/10.1111/mpp.12413

    Article  CAS  Google Scholar 

  • Willer H, Schlatter B, Trávníček J, Kemper L, Lernoud J (eds) (2020) The world of organic agriculture statistics and emerging trends, 21st edn. Research Institute of Organic Agriculture (FiBL) and IFOAM—Organics International, Frick and Bonn

  • Wolf B (1982) A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    Article  CAS  Google Scholar 

  • XLSTAT statistical package (2019) The XLSTAT system for windows, Version 2019.1, Excel Add-ins soft SARL, New York

  • Yadava UL (1986) A rapid and non-destructive method to determine chlorophyll in intact leaves. HortScience 21:1449–1450

    Article  CAS  Google Scholar 

  • Yeon J, Park AR, Kim YJ et al (2019) Control of root-knot nematodes by a mixture of maleic acid and copper sulfate. Appl Soil Ecol 141:61–68. https://doi.org/10.1016/j.apsoil.2019.05.010

    Article  Google Scholar 

  • Younis AM, Shoeib AA, Elsaedy MA, Osman KA (2016) Efficacy of ozone and hydrogen peroxide on controlling crown gall bacterium and root knot nematode infected Guava plants in Egypt, Alexandria. J Agric Sci 61:517–527

    Google Scholar 

  • Zekri M, Obreza T (2013) Calcium (Ca) and sulfur (S) for citrus trees: SL382/SS584, 7/2013. EDIS 2013(7). https://doi.org/10.32473/edis-ss584-2013

  • Zhang LL, He XJ, Chen M et al (2014) Responses of nitrogen metabolism to copper stress in Luffa cylindrica roots. J Soil Sci Plant Nutr 14:616–624. https://doi.org/10.4067/S0718-95162014005000049

    Article  Google Scholar 

Download references

Acknowledgements

The Authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for supporting the work through College of Food and Agriculture Sciences Research Center.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MA; Methodology, MA and SEH; Investigation, MA and SEH; Resources, MA and SEH; Writing-original draft preparation, MA and SEH; Writing-review and editing, MA and SEH; Supervision, MA; Funding acquisition, MA and SEH. All authors have read and agree to the published version of the manuscript.

Corresponding author

Correspondence to Mahmoud Abdel-Sattar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Heakeun Yun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Sattar, M., Hammad, S.E. Eco-friendly management of citrus nematode (Tylenchulus semipenetrans) using ozone, copper sulphate and calcium sulphate and its impact on productivity of lemon trees. Hortic. Environ. Biotechnol. 63, 779–792 (2022). https://doi.org/10.1007/s13580-022-00446-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00446-2

Keywords

Navigation