Skip to main content

Advertisement

Log in

Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs’ innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PEN:

Plant-derived exosome-like nanoparticle

EV:

Extracellular vesicle

EXO:

Exosome

GI:

Gastrointestinal

ELN:

Exosome-like nanoparticle

Edible-EN:

Edible plant-derived exosome-like nanoparticle

ILV:

Intraluminal vesicle

PBS:

Phosphate-buffered saline

PEG:

Polyethylene glycol

TNF:

Tumor necrosis factor

ACACA:

Acetyl-CoA carboxylase 1

ROS:

Reactive oxygen species

DOX:

Doxorubicin

Ginger-EN:

Ginger-derived exosome-like nanoparticle

Dmt1:

Divalent metal-ion transporter 1

ICG:

Indocyanine green

Aloe-EN:

Aloe-derived exosome-like nanoparticle

Asparagus-EN:

Asparagus-derived exosome-like nanoparticle

PARP:

Poly ADP-ribose polymerase

AIF:

Apoptosis-inducing factor

Bitter melon-EN:

Bitter melon-derived exosome-like nanoparticle

MMP-9:

Matrix metalloproteinase-9

Corn-ENs:

Corn-derived exosome-like nanoparticle

Cabbage-EN:

Cabbage-derived exosome-like nanoparticle

HDF:

Human dermal fibroblast

A-EV:

Aloe vera extracellular vesicle

CAA:

Cellular Antioxidant activity

SOD:

Superoxide dismutase

HaCaT:

Human keratinocytes

Carex:

Nanovesicle from carrot

HepG2:

Human hepatoma

NAFLD:

Nonalcoholic fatty liver disease

Garlic-EN:

Garlic-derived exosome-like nanoparticle

GDNP:

Ginger-derived nanoparticle

LPS:

Lipopolysaccharide

Grapefruit-EN:

Grapefruit-derived exosome-like nanoparticle

Ginseng-EN:

Ginseng-derived exosome-like nanoparticle

TLR:

Toll-like receptor

MyD88:

Myeloid differentiation antigen 88

Dendropanax morbifera-EN:

Dendropanax morbifera-Derived exosome-like nanoparticle

Pinus densiflora-EN:

Pinus densiflora-Derived exosome-like nanoparticle

Moringa oleifera-EN:

Moringa oleifera-Derived exosome-like nanoparticle

Strawberry-EN:

Strawberry-derived exosome-like nanoparticle

Blueberry-EN:

Blueberry-derived exosome-like nanoparticle

Grape-EN:

Grape-derived exosome-like nanoparticle

Broccoli-EN:

Broccoli-derived exosome-like nanoparticle

Tea-EN:

Tea-derived exosome-like nanoparticle

Lemon-EN:

Lemon-derived exosome-like nanoparticle

H&E:

Hematoxylin and eosin

FA:

Folic acid

References

  1. Khazaei F, Rezakhani L, Alizadeh M, Mahdavian E, Khazaei M. Exosomes and exosome-loaded scaffolds: characterization and application in modern regenerative medicine. Tissue Cell. 2022;80:102007.

    PubMed  Google Scholar 

  2. Rahmati S, Alizadeh M, Mirzapour P, Miller A, Rezakhani L. The effect of marine algae-derived exosomes on breast cancer cells: hypothesis on a new treatment for cancer. J Cancer Res Ther. 2023;19(2):218–20.

    PubMed  CAS  Google Scholar 

  3. Ana ID, Barlian A, Hidajah AC, Wijaya CH, Notobroto HB, KencanaWungu TD. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Future Sci OA. 2021;7(10):Fso751.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Amsar RM, Wijaya CH, Ana ID, et al. Extracellular vesicles: a promising cell-free therapy for cartilage repair. Future Sci OA. 2022;8(2):Fso774.

    PubMed  CAS  Google Scholar 

  5. Bang C, Thum T. Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4.

    PubMed  CAS  Google Scholar 

  6. Sarasati A, Syahruddin MH, Nuryanti A, et al. Plant-derived exosome-like nanoparticles for biomedical applications and regenerative therapy. Biomedicines. 2023;11(4):1053.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue barriers. 2016;4(2): e1134415.

    PubMed  PubMed Central  Google Scholar 

  8. Kim J, Li S, Zhang S, Wang J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J Pharm Sci. 2022;17(1):53–69.

    PubMed  Google Scholar 

  9. Orefice NS, Di Raimo R, Mizzoni D, Logozzi M, Fais S. Purposing plant-derived exosomes-like nanovesicles for drug delivery: patents and literature review. Expert Opin Ther Pat. 2023;33(2):89–100.

    PubMed  CAS  Google Scholar 

  10. Rashidi M, Bijari S, Khazaei AH, Shojaei-Ghahrizjani F, Rezakhani L. The role of milk-derived exosomes in the treatment of diseases. Front Genet. 2022;13:1009338.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Lian MQ, Chng WH, Liang J, et al. Plant-derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications. J Extracellular Vesicles. 2022;11(12):12283.

    CAS  Google Scholar 

  12. Dad HA, Gu T-W, Zhu A-Q, Huang L-Q, Peng L-H. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13–31.

    PubMed  CAS  Google Scholar 

  13. Ou Y-H, Liang J, Chng WH, et al. Investigations on cellular uptake mechanisms and immunogenicity profile of novel bio-hybrid nanovesicles. Pharmaceutics. 2022;14(8):1738.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Rezakhani L, Rahmati S, Ghasemi S, Alizadeh M, Alizadeh A. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Chem Phys Lipid. 2022;243: 105179.

    CAS  Google Scholar 

  15. Rutter BD, Innes RW. Growing pains: addressing the pitfalls of plant extracellular vesicle research. N Phytol. 2020;228(5):1505–10.

    Google Scholar 

  16. You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioactive Mater. 2021;6(12):4321–32.

    CAS  Google Scholar 

  17. Rahmati S, Khazaei M, Nadi A, Alizadeh M, Rezakhani L. Exosome-loaded scaffolds for regenerative medicine in hard tissues. Tissue Cell. 2023;82:102102.

    PubMed  CAS  Google Scholar 

  18. Rahmati S, Shojaei F, Shojaeian A, Rezakhani L, Dehkordi MB. An overview of current knowledge in biological functions and potential theragnostic applications of exosomes. Chem Phys Lipid. 2020;226: 104836.

    CAS  Google Scholar 

  19. Escola J-M, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 1998;273(32):20121–7.

    PubMed  CAS  Google Scholar 

  20. Rezakhani L, Fekri K, Rostaminasab G, Rahmati S. Exosomes: special nano-therapeutic carrier for cancers, overview on anticancer drugs. Med Oncol. 2022;40(1):31.

    PubMed  Google Scholar 

  21. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.

    PubMed  CAS  Google Scholar 

  22. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.

    PubMed  PubMed Central  Google Scholar 

  24. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    PubMed  Google Scholar 

  25. Suharta S, Barlian A, Hidajah AC, et al. Plant-derived exosome-like nanoparticles: a concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J Food Sci. 2021;86(7):2838–50.

    PubMed  CAS  Google Scholar 

  26. Karaosmanoğlu O. Investigation of the cytotoxicity of fig, lemon, olive, and turnip exosomes on MCF-7 cells. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2019;22:382–7.

    Google Scholar 

  27. Xiao J, Feng S, Wang X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;6: e5186.

    PubMed  PubMed Central  Google Scholar 

  28. Chen X, Zhou Y, Yu J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm. 2019;16(6):2690–9.

    PubMed  CAS  Google Scholar 

  29. Trentini M, Zanotti F, Tiengo E, et al. An apple a day keeps the doctor away: potential role of mirna 146 on macrophages treated with exosomes derived from apples. Biomedicines. 2022;10(2):415.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhuang X, Deng Z-B, Mu J, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracellular Vesicles. 2015;4(1):28713.

    Google Scholar 

  31. Zhao Z, Yu S, Li M, Gui X, Li P. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing. J Agric Food Chem. 2018;66(11):2749–57.

    PubMed  CAS  Google Scholar 

  32. Mu J, Zhuang X, Wang Q, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58(7):1561–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhao W-j, Bian Y-p, Wang Q-h, et al. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol Sin. 2022;43(3):645–58.

    PubMed  CAS  Google Scholar 

  34. Sanchez C, López MCM, Pérez-Bermúdez P, Soler C, Marcilla A. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct. 2022;13:12870–82.

    Google Scholar 

  35. Ly NP, Han HS, Kim M, Park JH, Choi KY. Plant-derived nanovesicles: current understanding and applications for cancer therapy. Bioactive Mater. 2023;22:365–83.

    CAS  Google Scholar 

  36. Deng S-Z, Lai M-F, Li Y-P, Xu C-H, Zhang H-R, Kuang J-G. Human marrow stromal cells secrete microRNA-375-containing exosomes to regulate glioma progression. Cancer Gene Ther. 2020;27(3):203–15.

    PubMed  CAS  Google Scholar 

  37. Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6(23):19514.

    PubMed  PubMed Central  Google Scholar 

  38. Ishibashi M, Ohtsuki T. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis. Med Res Rev. 2008;28(5):688–714.

    PubMed  CAS  Google Scholar 

  39. Raimondo S, Saieva L, Cristaldi M, Monteleone F, Fontana S, Alessandro R. Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of Citrus limon-derived nanovesicles. J Proteomics. 2018;173:1–11.

    PubMed  CAS  Google Scholar 

  40. Özkan İ, Koçak P, Yıldırım M, et al. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci Rep. 2021;11(1):1–11.

    Google Scholar 

  41. Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Sasaki D, Kusamori K, Takayama Y, Itakura S, Todo H, Nishikawa M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci Rep. 2021;11(1):1–12.

    Google Scholar 

  43. Wongkaewkhiaw S, Wongrakpanich A, Krobthong S, Saengsawang W, Chairoungdua A, Boonmuen N. Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf.). PLoS ONE. 2022;17(4): e0266044.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnol. 2020;18(1):1–12.

    CAS  Google Scholar 

  45. Rezakhani L, Alizadeh M, Sharifi E, Soleimannejad M, Alizadeh A. Isolation and characterization of crab haemolymph exosomes and its effects on breast cancer cells (4T1). Cell J (Yakhteh). 2021;23(6):658.

    Google Scholar 

  46. Chen Q, Li Q, Liang Y, et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B. 2022;12(2):907–23.

    PubMed  Google Scholar 

  47. Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat Commun. 2019;10(1):1–15.

    Google Scholar 

  48. Han X, Wei Q, Lv Y, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Mol Ther. 2022;30(1):327–40.

    PubMed  CAS  Google Scholar 

  49. Zhang L, He F, Gao L, et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile. Int J Nanomed. 2021;16:1575.

    Google Scholar 

  50. Yang M, Luo Q, Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnol. 2021;19(1):1–14.

    CAS  Google Scholar 

  51. Wang B, Guo X-J, Cai H, et al. Momordica charantia-derived extracellular vesicles-like nanovesicles inhibited glioma proliferation, migration, and invasion by regulating the PI3K/AKT signaling pathway. J Funct Foods. 2022;90: 104968.

    CAS  Google Scholar 

  52. Stanly C, Alfieri M, Ambrosone A, Leone A, Fiume I, Pocsfalvi G. Grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line. Cells. 2020;9(12):2722.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol. 2017;316:1–10.

    PubMed  CAS  Google Scholar 

  54. Cao M, Yan H, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer. 2019;7(1):1–18.

    CAS  Google Scholar 

  55. Kim K, Jung J-H, Yoo HJ, et al. Anti-metastatic effects of plant sap-derived extracellular vesicles in a 3D microfluidic cancer metastasis model. J Funct Biomater. 2020;11(3):49.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kim K, Yoo HJ, Jung J-H, et al. Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types. J Funct Biomater. 2020;11(2):22.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Potestà M, Roglia V, Fanelli M, et al. Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines. Cell Death Discov. 2020;6(1):1–17.

    Google Scholar 

  58. Kooijmans SA, Schiffelers RM, Zarovni N, Vago R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: new nanotools for cancer treatment. Pharmacol Res. 2016;111:487–500.

    PubMed  CAS  Google Scholar 

  59. Zhuang X, Teng Y, Samykutty A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24(1):96–105.

    PubMed  CAS  Google Scholar 

  60. Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21(3):1484–92.

    PubMed  CAS  Google Scholar 

  61. Wang Q, Zhuang X, Mu J, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4(1):1–13.

    Google Scholar 

  62. Teng Y, Mu J, Hu X, et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget. 2016;7(18):25683.

    PubMed  PubMed Central  Google Scholar 

  63. Zhang M, Xiao B, Wang H, et al. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24(10):1783–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12(16):1927–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Li Z, Wang H, Yin H, Bennett C, Zhang H-G, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8(1):1–11.

    Google Scholar 

  66. Crownover BK, Covey C. Hereditary hemochromatosis. Am Fam Physician. 2013;87(3):183–90.

    PubMed  Google Scholar 

  67. Wang X, Zhang M, Flores SR, et al. Oral gavage of ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis. Mol Ther. 2019;27(3):493–506.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Zeng L, Wang H, Shi W, et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J Nanobiotechnol. 2021;19(1):1–24.

    Google Scholar 

  69. Zeng L, Shi W, Wang H, et al. Codelivery of π–π stacked dual anticancer drugs based on aloe-derived nanovesicles for breast cancer therapy. ACS Appl Mater Interfaces. 2022;14:27686–702.

    PubMed  CAS  Google Scholar 

  70. Xiao Q, Zhao W, Wu C, et al. Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis-triggered energy dissipation and energy production reduction. Adv Sci. 2022;9: e2105274.

    Google Scholar 

  71. Xu D-P, Li Y, Meng X, et al. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017;18(1):96.

    PubMed  PubMed Central  Google Scholar 

  72. Alfieri M, Leone A, Ambrosone A. Plant-derived nano and microvesicles for human health and therapeutic potential in nanomedicine. Pharmaceutics. 2021;13(4):498.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Rizzo L, Della Sala A, Fiorentino A, Puma GL. Disinfection of urban wastewater by solar driven and UV lamp–TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Res. 2014;53:145–52.

    PubMed  CAS  Google Scholar 

  74. Woith E, Guerriero G, Hausman J-F, et al. Plant extracellular vesicles and nanovesicles: focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources. Int J Mol Sci. 2021;22(7):3719.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Nemati M, Singh B, Mir RA, et al. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal. 2022;20(1):1–16.

    Google Scholar 

  76. Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18:561–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Baldini N, Torreggiani E, Roncuzzi L, Perut F, Zini N, Avnet S. Exosome-like nanovesicles isolated from Citrus limon L. exert anti-oxidative effect. Curr Pharm Biotechnol. 2018;19(11):877–85.

    PubMed  CAS  Google Scholar 

  78. Perut F, Roncuzzi L, Avnet S, et al. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11(1):87.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Kim DK, Rhee WJ. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics. 2021;13(8):1203.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. De Robertis M, Sarra A, D’oria V, et al. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-Induced change on gene expression in EA hy926 cells. Biomolecules. 2020;10(5):742.

    PubMed  PubMed Central  Google Scholar 

  81. Deng Z, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25(7):1641–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Lei C, Teng Y, He L, et al. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. Iscience. 2021;24(6): 102511.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Sriwastva MK, Deng ZB, Wang B, et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022;23(3): e53365.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(2):90–100.

    PubMed  Google Scholar 

  85. Chen L, Brenner DA, Kisseleva T. Combatting fibrosis: exosome-based therapies in the regression of liver fibrosis. Hepatol Commun. 2019;3(2):180–92.

    PubMed  Google Scholar 

  86. An Q, van Bel AJ, Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal Behav. 2007;2(1):4–7.

    PubMed  PubMed Central  Google Scholar 

  87. Abraham AM, Wiemann S, Ambreen G, et al. Cucumber-derived exosome-like vesicles and plantcrystals for improved dermal drug delivery. Pharmaceutics. 2022;14(3):476.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Kim JH. Nanoparticle composition for prevention of hair loss and promotion of hair growth. In: Google Patents; 2010.

  89. Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res. 2020;23:101–11.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Mahdipour E. Beta vulgaris juice contains biologically active exosome-like nanoparticles. Tissue Cell. 2022;76: 101800.

    PubMed  CAS  Google Scholar 

  91. Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Singh N, Verma P, Pandey B. Therapeutic potential of organic Triticum aestivum Linn. (Wheat Grass) in prevention and treatment of chronic diseases: an overview. Int J Pharm Sci Drug Res. 2012;4(1):10–4.

    CAS  Google Scholar 

  93. Chauhan M. A pilot study on wheat grass juice for its phytochemical, nutritional and therapeutic potential on chronic diseases. Int J Chem Stud. 2014;2(4):27–34.

    Google Scholar 

  94. Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188:381–94.

    PubMed  Google Scholar 

  95. Wu K, Xing F, Wu S-Y, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochimica et Biophysica Acta BBA Rev Cancer. 2017;1868(2):538–63.

    CAS  Google Scholar 

  96. Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chem. 2019;272:372–8.

    PubMed  CAS  Google Scholar 

  97. Bokka R, Ramos AP, Fiume I, et al. Biomanufacturing of tomato-derived nanovesicles. Foods. 2020;9(12):1852.

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Pocsfalvi G, Turiák L, Ambrosone A, et al. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol. 2018;229:111–21.

    PubMed  CAS  Google Scholar 

  99. Fujita D, Arai T, Komori H, et al. Apple-derived nanoparticles modulate expression of organic-anion-transporting polypeptide (OATP) 2B1 in Caco-2 cells. Mol Pharm. 2018;15(12):5772–80.

    PubMed  CAS  Google Scholar 

  100. Arai M, Komori H, Fujita D, Tamai I. Uptake pathway of apple-derived nanoparticle by intestinal cells to deliver its cargo. Pharm Res. 2021;38(3):523–30.

    PubMed  CAS  Google Scholar 

  101. Ghiasi MR, Rahimi E, Amirkhani Z, Salehi R. Leucine-rich repeat-containing G-protein coupled receptor 5 gene overexpression of the rat small intestinal progenitor cells in response to orally administered grape exosome-like nanovesicles. Adv Biomed Res. 2018;7:125.

    Google Scholar 

  102. Pérez-Bermúdez P, Blesa J, Soriano JM, Marcilla A. Extracellular vesicles in food: experimental evidence of their secretion in grape fruits. Eur J Pharm Sci. 2017;98:40–50.

    PubMed  Google Scholar 

  103. Zhang M, Yang C, Yan X, Sung J, Garg P, Merlin D. Highly biocompatible functionalized layer-by-layer ginger lipid nano vectors targeting P-selectin for delivery of doxorubicin to treat colon cancer. Adv Ther. 2019;2(12):1900129.

    CAS  Google Scholar 

  104. Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microb. 2018;24(5):637-652.e638.

    CAS  Google Scholar 

  105. Regente M, Corti-Monzón G, Maldonado AM, Pinedo M, Jorrín J, de la Canal L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett. 2009;583(20):3363–6.

    PubMed  CAS  Google Scholar 

  106. Ratnadewi D, Widjaja CH, Barlian A, et al. Isolation of native plant-derived exosome-like nanoparticles and their uptake by human cells. HAYATI J Biosci. 2023;30(1):182–92.

    Google Scholar 

Download references

Funding

This work was granted by the Kermanshah University of Medical Sciences, Kermanshah, Iran (IR.KUMS.REC.1401.397).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leila Rezakhani or Esmaeel Sharifi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

Our study did not require ethical board approval because it did not contain human or animal trials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati, S., Karimi, H., Alizadeh, M. et al. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Human Cell 37, 121–138 (2024). https://doi.org/10.1007/s13577-023-00994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00994-4

Keywords

Navigation