Skip to main content

Advertisement

Log in

Stem cell sources from human biological waste material: a role for the umbilical cord and dental pulp stem cells for regenerative medicine

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Stem cell research with biological waste material is an area that holds promise to revolutionize treatment modalities and clinical practice. The interest in surgical remnants is increasing with time as research on human embryonic stem cells remains controversial due to legal and ethical issues. Perhaps, these restrictions are the motivation for the use of alternative mesenchymal stem cell (MSC) sources in the regenerative field. Stem cells (SCs) of Umbilical Cord (UC) and Dental Pulp (DP) have almost similar biological characteristics to other MSCs and can differentiate into a number of cell lineages with enormous potential future prospects. A concise critical observation of UC-MSCs and DP-MSCs is presented here reviewing articles from the last two decades along with other stem cell sources from different biological waste materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Transparent data.

Code availability

Not applicable.

References:

  1. Cherian E, Nandhini G, Kurian A. Stem cells.2011;Ed.1:1–95.

  2. Bhattachariya N. Phillip stubblefield. Front cord Blood Sci. 2009;1(1):21–2.

    Google Scholar 

  3. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human Mesenchymal stem cells (MSC): A comparison of Adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9(12):1–14.

    Google Scholar 

  4. Das M, Das A, Barui A, Paul RR. Comparative evaluation of proliferative potential and replicative senescence associated changes in mesenchymal stem cells derived from dental pulp and umbilical cord. Cell Tissue Bank. 2022;23(1):157–70. https://doi.org/10.1007/s10561-021-09926-8. (Epub 2021 Apr 26 PMID: 33900487).

    Article  CAS  PubMed  Google Scholar 

  5. Ren H, Sang Y, Zhang F, Liu Z, Qi N, Chen Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells Int. 2016. https://doi.org/10.1155/2016/3516574. (Epub 2016 Jan 10. PMID: 26880954; PMCID: PMC4736971).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Griffiths MJ, Bonnet D, Janes SM. Stem cells of the alveolar epithelium. Lancet. 2005;366:249–60.

    Article  PubMed  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Asahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  8. Khan FA, Almohazey D, Alomari M, Almofty SA. Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges firdos. Stem Cells Int. 2018. https://doi.org/10.1155/218/1429351.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;14(9):12. https://doi.org/10.1186/1478-811X-9-12. (PMID:21569606;PMCID:PMC3117820).

    Article  CAS  Google Scholar 

  10. Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K. Comparison of human placentaand bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev. 2008;17:1095–107.

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto K, Miyoshi S, Toyoda M, Hida N, Ikegami Y, Makino H, Nishiyama N, Tsuji H, Cui CH, Segawa K, Uyama T, Kami D, Miyado K, Asada H, Matsumoto K, Saito H, Yoshimura Y, Ogawa S, Aeba R, Yozu R, Umezawa A. Working’ cardiomyocytes exhibiting plateau action potentials from human placenta-derived extraembryonic mesodermal cells. Exp Cell Res. 2007;313:2550–62.

    Article  CAS  PubMed  Google Scholar 

  12. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  PubMed  Google Scholar 

  13. Wouters G, Grossi S, Mesoraca A, et al. Isolation of amniotic fluid-derived mesenchymal stem cells. J Prenat Med. 2007;1(3):39–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Spitzhorn LS, Rahman MS, Schwindt L, Ho HT. Isolation and molecular characterization of amniotic fluid-derived mesenchymal stem cells obtained from caesarean sections. Stem Cells International. 2017;3:1–15.

    Article  Google Scholar 

  15. Graham CD, Fauza D. Isolation of mesenchymal stem cells from amniotic fluid and placenta. Curr Protoc Stem Cell Biol. 2015;35(1):1–14.

    Article  Google Scholar 

  16. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    Article  PubMed  Google Scholar 

  17. Renda MC, Fecarotta E, Schillaci G, Leto F, Calvaruso G, Garofalo GM, et al. Mesenchymal fetal stem cells (FMSC) from amniotic fluid (AF): expansion and phenotypic characterization. Blood. 2015;126(23):4758.

    Article  Google Scholar 

  18. Prado SD, López EM, Gómez TH, Cicione C, Vázquez ER, Boquete IF, et al. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation. 2011;1:162–71.

    Article  Google Scholar 

  19. Ramuta TŽ, Kreft ME. Human amniotic membrane and amniotic membrane-derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant. 2018;27(1):77–92.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Motedayyen H, Esmaeil N, Tajik N, Khadem F, Ghotloo S, Khani B, et al. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. BMC Res Notes. 2017;10:552.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaianand K, Palaniyandi M, Iqbal T, Balaji P. Villous chorion: a potential source for pluripotent-like stromal cells. J Natural Sci Biol Med. 2017;8(2):221–8.

    Article  Google Scholar 

  22. Muench MO, Kapidzic M, Gormley M, Gutierrez AG, Kathryn L. The human chorion contains definitive hematopoietic stem cells from the fifteenth week of gestation. Development. 2017;144:1399–2141.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang Q, Yang Y, Luo C, Wen Y, Liu R, Li S, et al. An efficient protocol to generate placental chorionic plate-derived mesenchymal stem cells with superior proliferative and immunomodulatory properties. Stem Cell Res Ther. 2019;10:301.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shaer A, Azarpira N, Aghdaie MH, Esfandiari E. Isolation and characterization of Human mesenchymal stromal cells derived from placental decidua basalis; Umbilical cord Wharton’s Jelly and Amniotic Membrane. Pak J Med Sci Online. 2014;30(5):1022–6.

    Google Scholar 

  25. Chen G, Yue A, Ruan Z, et al. Comparison of biological characteristics of mesenchymal stem cells derived from maternal-origin placenta and Wharton’s jelly. Stem Cell Res Ther. 2015;6:228.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hassan G, Kasem I, Soukkarieh C, Aljamali M. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells. 2017;10(2):184–92. https://doi.org/10.15283/ijsc17028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mennan C, Wright K, Bhattacharjee A, Balain B, Richardson J, Roberts S. Isolation and Characterisation of mesenchymal stem cells from different regions of the human umbilical cord. Biomed Res Int. 2013;2013: 916136.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75. https://doi.org/10.1182/blood-2003-05-1670. (Epub 2003 Oct 23 PMID: 14576065).

    Article  CAS  PubMed  Google Scholar 

  29. Karamzadeh R, Eslaminejad MB, Aflatoonian R. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp. 2012;69:4372. https://doi.org/10.3791/4372.

    Article  CAS  Google Scholar 

  30. Pisciotta A, Riccio M, Carnevale G, Lu A, Biasi SD, Gibellini L, et al. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther. 2015;6(1):156.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Naz S, Khan FR, Rahat R, Ladhani S, Khan MS, Mohammed N, Ahmad T. Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pak J Med Sci. 2019;35(4):997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsai AI, Hong HH, Lin WR, Fu JF, Chang CC, Wang IK, et al. Isolation of mesenchymal stem cells from human deciduous teeth pulp. Biomed Res Int. 2017. https://doi.org/10.1155/2017/2851906.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marrelli M, Paduano F, Tatullo M. Human periapical cyst-mesenchymal stem cells differentiate into neuronal cells. J Dent Res. 2015;94(6):843–52. https://doi.org/10.1177/0022034515570316. (Epub 2015 Feb 11 PMID: 25672890).

    Article  CAS  PubMed  Google Scholar 

  34. Tatullo M, Codispoti B, Pacifici A, Palmieri F, Marrelli M, Pacifici L, Paduano F. Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications. Front Cell Dev Biol. 2017;5(103):5. https://doi.org/10.3389/fcell.2017.00103.

    Article  Google Scholar 

  35. Liao J, Al Shahrani M, Al-Habib M, Tanaka T, Huang GT. Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endod. 2011;37:1217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med. 2014;3(2):206–17.

    Article  CAS  PubMed  Google Scholar 

  37. Zollino I, Sibilla MG, Gianesini S, Tessari M, Malagoni AM, Menegatti E. Technique for intraoperatory harvesting of adipose derived stem cells: towards cell treatment of recalcitrant ulcers. Veins Lymph. 2017;6(2):51–5.

    Google Scholar 

  38. Mieczkowska A, Schumacher A, Filipowicz N, et al. Immunophenotyping and transcriptional profiling of in vitro cultured human adipose tissue derived stem cells. Sci Rep. 2018;8:11339. https://doi.org/10.1038/s41598-018-29477-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khaddour K, Hana CK, Mewawalla P. Hematopoietic Stem Cell Transplantation. Jan 2023; StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK536951/. Accessed 22 Apr 2023.

  40. Broxmeyer HE, Srour E, Orschell C, Ingram DA, Cooper S, Plett PA, Mead LE, Yoder MC. Cord blood stem and progenitor cells. Methods Enzymol. 2006;419:439–73.

    Article  CAS  PubMed  Google Scholar 

  41. Wu C, Chen L, Huang YZ, Huang Y, Parolini O, Zhong Q, Tian X, Deng L. Comparison of the proliferation and differentiation potential of human urine-, placenta decidua basalis-, and bone marrow-derived stem cells. Stem Cells Int. 2018;13(2018):7131532. https://doi.org/10.1155/2018/7131532. (Erratum.In:StemCellsInt.2019Mar10;2019:1651506.PMID:30651734;PMCID:PMC6311712).

    Article  CAS  Google Scholar 

  42. Zhang Y, McNeill E, Tian H, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  CAS  PubMed  Google Scholar 

  43. Sun Z, Gu P, Xu H, Zhao W, Zhou Y, Zhou L, Zhang Z, Wang W, Han R, Chai X, An S. Human umbilical cord mesenchymal stem cells improve locomotor function in Parkinson’s disease mouse model through regulating intestinal microorganisms. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2021.808905.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rahyussalim AJ, Saleh I, Kurniawati T, Lutfi APWY. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report. J Med Case Rep. 2017;11(1):334. https://doi.org/10.1186/s13256-017-1489-7. (PMID:29187247;PMCID:PMC5707902).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kilpinen L, Impola U, Sankkila L, et al. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles. 2013. https://doi.org/10.3402/jev.v2i0.21927.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang C, Liao W, Li W, Li M, Xu X, Sun H, Xue Y, Liu L, Qiu J, Zhang C, Zhang X, Ye J, Du J, Deng D, Deng W, Li T. Human Umbilical cord mesenchymal stem cells derived extracellular vesicles alleviate salpingitis by promoting M1-to-M2 transformation. Front Physiol. 2013;14:1–16. https://doi.org/10.3389/fphys.2023.1131701.

    Article  Google Scholar 

  47. Li Y, Duan X, Chen Y, et al. Dental stem cell-derived extracellular vesicles as promising therapeutic agents in the treatment of diseases. Int J Oral Sci. 2022;14:2. https://doi.org/10.1038/s41368-021-00152-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tayhan SE, Keleş GT, Topçu İ, Mir E, Gürhan SİD. Isolation and in vitro cultivation of human urine-derived cells: an alternative stem cell source. Turk J Urol. 2017;43(3):345–9. https://doi.org/10.5152/tud.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin W, Li G. A novel protocol for isolation and culture of multipotent progenitor cells from human urine. J Orthop Transl. 2019;19(3):12–7.

    Google Scholar 

  50. Chen L, Li L, Xing F, Peng J, Peng K, Wang Y, Xiang Z. Human urine-derived stem cells: potential for cell-based therapy of cartilage defects. Stem Cells Int. 2018;2018:4686259. https://doi.org/10.1155/2018/4686259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG. Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant. 2008;17(3):303–11. https://doi.org/10.3727/096368908784153922. (Erratum.In:CellTransplant.2008;17(6):721.Erratumin:CellTransplant.2008;17(7):875 PMID: 18522233).

    Article  PubMed  Google Scholar 

  52. Uzieliene I, Urbonaite G, Tachtamisevaite Z, Mobasheri A, Bernotiene E. The potential of menstrual blood-derived mesenchymal stem cells for cartilage repair and regeneration: novel aspects. Stem Cells Int. 2018;3(2018):5748126. https://doi.org/10.1155/2018/5748126. (PMID:30627174;PMCID:PMC6304826).

    Article  CAS  Google Scholar 

  53. Sun Y, Ren Y, Yang F, He Y, Liang S, Guan L, Cheng F, Liu Y, Lin J. High-yield isolation of menstrual blood-derived endometrial stem cells by direct red blood cell lysis treatment. Biol Open. 2019;8(5):bio038885. https://doi.org/10.1242/bio.038885. (PMID: 31036750; PMCID: PMC6550070).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antonio Nanci Ten Cate’s Oral Histology development, structure and function. 6th edition. 2005;192–239.

  55. Chen Y, Li X, Wu J, Lu W, Xu W, Wu B. Dental pulp stem cells from human teeth with deep caries displayed an enhanced angiogenesis potential in vitro. J Dent Sci. 2021;16(1):318–26. https://doi.org/10.1016/j.jds.2020.03.007. (ISSN 1991-7902).

    Article  PubMed  Google Scholar 

  56. Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative potential of DPSCs and revascularization: direct, paracrine or autocrine effect? Stem Cell Rev Rep. 2021. https://doi.org/10.1007/s12015-021-10162-6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5. https://doi.org/10.1177/154405910208100806. (PMID: 12147742).

    Article  CAS  PubMed  Google Scholar 

  58. Ching HS, Luddin N, Rahman IA, Ponnuraj KT. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr Stem Cell Res Ther. 2017;12(1):71–9. https://doi.org/10.2174/1574888x11666160815095733. (PMID: 27527527).

    Article  CAS  PubMed  Google Scholar 

  59. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13:152–9. https://doi.org/10.1007/s11684-018-0628-x.

    Article  PubMed  Google Scholar 

  60. Fujii Y, Hatori A, Chikazu D, Ogasawara T. Application of dental pulp stem cells for bone and neural tissue regeneration in oral and maxillofacial region. Stem Cells Int. 2023. https://doi.org/10.1155/2023/2026572. (PMID: 37035445; PMCID: PMC10076122).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cui X, Chen L, Xue T, Jing Y, Liu J, Ji Y, Cheng L. Human umbilical cord and dental pulp-derived mesenchymal stem cells: Biological characteristics and potential roles in vitro and in vivo. Mol Med Rep. 2015;11:3269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stemcells (DPSCs) in vitro and in vivo. Proc Natl Acadm Sci USA. 2000;97:13625–30.

    Article  CAS  Google Scholar 

  63. Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F, Tirino V, Mangano F, Papaccio G. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials. 2010;31:3543–51.

    Article  CAS  PubMed  Google Scholar 

  64. Struys T, Moreels M, Martens W, Donders R, Wolfs E, Lambrichts I. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs. 2010;193:366–78. https://doi.org/10.1159/000321400.

    Article  PubMed  Google Scholar 

  65. Saben J, Thakali KM, Lindsey FE, Zhong Y, Badger TM, Andres A, Shankar K. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions. Exp Biol Med (Maywood). 2011;239(10):1340–51. https://doi.org/10.1177/1535370214539225. (Epub 2014 Jun 20. PMID: 24951473; PMCID: PMC4238288).

    Article  CAS  Google Scholar 

  66. Alison MR, Poulsom R, Forbes S, Wright NA. An introduction to stem cells. J Pathol. 2002;197(4):419–23.

    Article  PubMed  Google Scholar 

  67. Daniel MG, Pereira C-F, Lemischka IR, Moore KA. Making a hematopoietic stem cell. Trends Cell Biol. 2016;26(3):202–14. https://doi.org/10.1016/j.tcb.2015.10.002.

    Article  PubMed  Google Scholar 

  68. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32(8):795–803. https://doi.org/10.1038/nbt.2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferraro F, Celso CL, Scadden D. Adult stem cells and their niches. Adv Exp Med Biol. 2010;695:155–68. https://doi.org/10.1007/978-1-4419-7037-4_11. (PMID:21222205;PMCID:PMC4020242).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Biteau B, Hochmuth CE, Jasper H. JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell. 2008;3(4):442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012;148(1–2):33–45. https://doi.org/10.1016/j.cell.2012.01.002.

    Article  CAS  PubMed  Google Scholar 

  72. Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588–601. https://doi.org/10.1016/j.neuron.2013.10.037.

    Article  CAS  PubMed  Google Scholar 

  73. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259:150–6.

    Article  CAS  PubMed  Google Scholar 

  74. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE. 2008;3: e3336.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Weiss ML, Medicetty S, Bledsoe AR, et al. Stem cells in the umbilical cord. Stem Cells Rev. 2006;24(3):791–2.

    Google Scholar 

  76. Carlin R, Davis D, Weiss ML, Schultz BD. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol. 2006;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wolfs E, Struys T, Lambrichts I. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs. 2011;96(3):121–6.

    Google Scholar 

  78. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant. 2015;24:339–47.

    Article  PubMed  Google Scholar 

  79. Ya-Bin Yu, Song Y, Chen Ya, Zhang F, Qi F-Z. Differentiation of umbilical cord mesenchymal stem cells into hepatocytes in comparison with bone marrow mesenchymal stem cells. Mol Med Rep. 2018;18(2):2009–16.

    Google Scholar 

  80. Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning. 2015;28(8):125–34. https://doi.org/10.2147/SCCAA.S88036. (PMID:26451119;PMCID:PMC4592031).

    Article  Google Scholar 

  81. Laino G, Graziano A, Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G. An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol. 2006;206:693–785.

    Article  CAS  PubMed  Google Scholar 

  82. Huang GTJ, Sonoyama W, Chen J, Park S. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res. 2006;324:225.

    Article  PubMed  Google Scholar 

  83. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE. 2013;8(8): e72604. https://doi.org/10.1371/journal.pone.0072604. (PMID: 23991127; PMCID: PMC3749979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Teng S-W, Lo Y-S, Liu W-T, Hsuan Y, Lin W. A genome-wide comparison of mesenchymal stem cells derived from human placenta and umbilical cord. Taiwan J Obstet Gynecol. 2017;56(5):664–71.

    Article  PubMed  Google Scholar 

  85. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, He TC. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;17:1312–20.

    Article  Google Scholar 

  86. Kang C-M, Kim H, Song JS, Choi B-J, Kim S-O, Jung H-S, et al. Genetic comparison of stemness of human umbilical cord and dental pulp. Stem Cells Int. 2016;2016:3453890.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Reboredo NM, Díaz A, Castro A, Villaescusa RG. Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplantat. 2001;26:1263–70.

    Article  Google Scholar 

  88. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, et al. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208:319–25.

    Article  CAS  PubMed  Google Scholar 

  89. Rai S, Kaur M, Kaur S, Arora SP. Redefining the potential applications of dental stem cells: an asset for future. Indian J Hum Genet. 2012;18(3):276–84. https://doi.org/10.4103/0971-6866.107976. (PMID:23716933;PMCID:PMC3656514).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci. 2016;73(17):3311–21.

    Article  CAS  PubMed  Google Scholar 

  91. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int. 2019;9(2019):9628536. https://doi.org/10.1155/2019/9628536. (PMID:31093291;PMCID:PMC6481040).

    Article  CAS  Google Scholar 

  92. Petrini C. Umbilical cord blood collection, storage and use: ethical issues. Blood Transfus. 2010;8(3):139–48.

    PubMed  PubMed Central  Google Scholar 

  93. Monitoring stem cell research. Washington, D.C.: The President’s Council on Bioethics [Google Scholar]. 2004. https://bioethicsarchive.georgetown.edu/pcbe/reports/stemcell/. Accessed 22 Apr 2023.

  94. Lyerly AD, Faden RR. Embryonic stem cells. Willingness to donate frozen embryos for stem cell research. Science. 2007;317:46–7.

    Article  PubMed  Google Scholar 

  95. Clinical trial overview: neuronal ceroid lipofuscinosis (NCL, often called Batten disease). http://www.stemcellsinc.com/clinicaltrials/clinicaltrials.html. Accessed 4 Mar 2009.

  96. European Group on Ethics in Science and New Technologies: Opinion n. 19. Ethical aspects of umbilical cord blood banking. 16 March 2004. http://ec.europa.eu/european_group_ethics/publications/docs/publop19_en.pdf. Accessed 15 Nov 2009.

  97. Azuma K. Regulatory landscape of regenerative medicine in Japan. Curr Stem Cell Rep. 2015;1:118–28. https://doi.org/10.1007/s40778-015-0012-6.

    Article  Google Scholar 

  98. Mathur R. National ethical guidelines for biomedical and health research involving human participants. In: ICMR Guidelines. 2017. (ISBN: 978–81–910091–94).

  99. Caulfield T, Kamenova K, Ogbogu U, Zarzeczny A, Baltz J, Benjaminy S, Cassar PA, Clark M, Isasi R, Knoppers B, Knowles L, Korbutt G, Lavery JV, Lomax GP, Master Z, McDonald M, Preto N, Toews M. Research ethics and stem cells: IS it time to re-think current approaches to oversight? EMBO Rep. 2015;16(1):2–6. https://doi.org/10.15252/embr.201439819. (Epub 2014 Dec 4. PMID: 25476708; PMCID: PMC4304722).

    Article  CAS  PubMed  Google Scholar 

  100. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29. https://doi.org/10.1186/1479-5876-9-29.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  102. Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. npj Regen Med. 2020;5:15. https://doi.org/10.1038/s41536-020-00100-4.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res. 2013;92(9):833–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MD: data collection, writing, correction/addition/alteration. AS: correction/addition/alteration, guidance/supervision/suggestion.

Corresponding author

Correspondence to Monalisa Das.

Ethics declarations

Conflict of interest

None.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Sloan, A.J. Stem cell sources from human biological waste material: a role for the umbilical cord and dental pulp stem cells for regenerative medicine. Human Cell 36, 1312–1325 (2023). https://doi.org/10.1007/s13577-023-00922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00922-6

Keywords

Navigation