Skip to main content
Log in

Novel insights into tumorigenesis and prognosis of endometrial cancer through systematic investigation and validation on mitophagy-related signature

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In-depth studies on the pathogenesis of endometrial cancer (EC) are critical because of the increasing global incidence of EC. Mitophagy, a mitochondrial quality control process, plays an important role in carcinogenesis and tumor progression. This study aimed to develop a novel mitophagy-based signature to predict the tumorigenesis and prognosis of EC. Data was downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and 29 mitophagy-related genes were downloaded from the Pathway Unification Database. EC patients were classified into two risk groups based on the two-key- gene signature, TOMM40 and MFN1, which were constructed using Cox regression analysis. A better prognosis was noted in the low-risk group. The model was validated for four aspects: clinical features, mutation status, clinical therapeutic response, and immune cell infiltration status. Moreover, according to the contribution to the risk model, TOMM40 was selected for further in vitro experiments. The silencing of TOMM40 inhibited mitochondrial degradation; suppressed cell proliferation; induced cell apoptosis and G1 phase cell cycle arrest; inhibited migration, invasion, and epithelial-mesenchymal transition; and suppressed cell stemness. In conclusion, the mitophagy-related risk score provides a novel perspective for survival and drug selection during the individual treatment of EC patients. TOMM40 serves as an oncogene in EC and promotes tumor progression via a mitophagy-related pathway. Thus, TOMM40 is a potential therapeutic target in EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are included in this published article [and its supplementary information files]. Additional data and materials of the study can be obtained from the corresponding authors.

Abbreviations

EC:

Endometrial cancer

MSI-H:

Microsatellite instability hypermutated

CNL:

Copy-number-low

CNH:

Copy-number-high

BNIP3:

Adenovirus E1B 19-kDa interacting protein 3

TCGA:

The cancer genome atlas

TME:

Tumor microenvironment

FPKM:

Fragments per kilobase of transcript per million mapped reads

TPM:

Transcripts per kilobase million

GEO:

Gene expression omnibus

AIC:

Akaike information criterion

MRGs:

Mitophagy-related genes

ROC:

Receiver operating characteristic

IHC:

Immunohistochemistry

mRNAsi:

MRNA expression-based stemness index

OCLR:

One-class logistic regression machine learning algorithm

IC50:

Half-maximal inhibitory concentration

GDSC:

Genomics of drug sensitivity in cancer

RSI:

Radiosensitivity index

ICIs:

Immune-checkpoint inhibitors

IPS:

Immunophenoscore

PMSF:

Phenylmethanesulfonyl fluoride

BCA:

Bicinchoninic acid

siRNA:

Small interfering RNA

RT-qPCR:

Real-time quantitative polymerase chain reaction

CCK8:

Cell counting kit8

OD:

Optical density

SD:

Standard deviation

MFN1:

Mitochondrial fusion protein mitofusin-1

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  3. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.

    Article  CAS  Google Scholar 

  4. Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol. 2020;66:45–58. https://doi.org/10.1016/j.semcancer.2019.07.015.

    Article  CAS  PubMed  Google Scholar 

  5. Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, et al. Mitophagy in human diseases. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22083903.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, et al. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Autophagy. 2013;9(11):1801–17. https://doi.org/10.4161/auto.25884.

    Article  CAS  PubMed  Google Scholar 

  7. Imberechts D, Kinnart I, Wauters F, Terbeek J, Manders L, Wierda K, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy. Brain. 2022;145(12):4368–84. https://doi.org/10.1093/brain/awac313.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmed S, Kwatra M, Ranjan Panda S, Murty USN, Naidu VGM. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun. 2021;91:142–58. https://doi.org/10.1016/j.bbi.2020.09.017.

    Article  CAS  PubMed  Google Scholar 

  9. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. The EMBO Journal. 2021;40(3). doi:https://doi.org/10.15252/embj.2020104705.

  10. Um JH, Yun J. Emerging role of mitophagy in human diseases and physiology. BMB Rep. 2017;50(6):299–307. https://doi.org/10.5483/bmbrep.2017.50.6.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 2022;55(12):e13327. https://doi.org/10.1111/cpr.13327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 2021. https://doi.org/10.1186/s13045-020-01029-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Esteban-Martinez L, Sierra-Filardi E, McGreal RS, Salazar-Roa M, Marino G, Seco E, et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 2017;36(12):1688–706. https://doi.org/10.15252/embj.201695916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guerra F, Kurelac I, Cormio A, Zuntini R, Amato LB, Ceccarelli C, et al. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet. 2011;20(12):2394–405. https://doi.org/10.1093/hmg/ddr146.

    Article  CAS  PubMed  Google Scholar 

  15. Musicco C, Cormio G, Pesce V, Loizzi V, Cicinelli E, Resta L, et al. Mitochondrial dysfunctions in type i endometrial carcinoma: exploring their role in oncogenesis and tumor progression. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19072076.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gong X, Pu X, Wang J, Yang L, Cui Y, Li L, et al. Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/Parkin-mediated mitophagy. Int J Nanomed. 2021;16:6661–79. https://doi.org/10.2147/IJN.S329341.

    Article  Google Scholar 

  17. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173(2):338-54e15. https://doi.org/10.1016/j.cell.2018.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009;75(2):489–96. https://doi.org/10.1016/j.ijrobp.2009.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612.

    Article  CAS  PubMed  Google Scholar 

  20. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8. https://doi.org/10.1038/s41591-018-0136-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Li L, Zhang H, Zhao Y, Zhang H, Wu S, et al. A risk model developed based on tumor microenvironment predicts overall survival and associates with tumor immunity of patients with lung adenocarcinoma. Oncogene. 2021;40(26):4413–24. https://doi.org/10.1038/s41388-021-01853-y.

    Article  CAS  PubMed  Google Scholar 

  23. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62. https://doi.org/10.1016/j.celrep.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao T, Sun R, Ma X, Wei L, Hou Y, Song K, et al. Overexpression of LPCAT1 enhances endometrial cancer stemness and metastasis by changing lipid components and activating the TGF/β-Smad2/3 signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2022;54(7):904–16. https://doi.org/10.3724/abbs.2022076.

    Article  PubMed  Google Scholar 

  25. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(2):321-37e10. https://doi.org/10.1016/j.cell.2018.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71. https://doi.org/10.1016/j.dnarep.2016.04.008.

    Article  CAS  PubMed  Google Scholar 

  27. Poole LP, Macleod KF. Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 2021;78(8):3817–51. https://doi.org/10.1007/s00018-021-03774-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu Y-H, Zhang T-S, Wang X-W, Wang M-Y, Zhao W-X, Zhou H-M, et al. Mitochondria autophagy: a potential target for cancer therapy. J Drug Target. 2021;29(6):576–91. https://doi.org/10.1080/1061186x.2020.1867992.

    Article  CAS  PubMed  Google Scholar 

  29. Cormio A, Musicco C, Gasparre G, Cormio G, Pesce V, Sardanelli AM, et al. Increase in proteins involved in mitochondrial fission, mitophagy, proteolysis and antioxidant response in type I endometrial cancer as an adaptive response to respiratory complex I deficiency. Biochem Biophys Res Commun. 2017;491(1):85–90. https://doi.org/10.1016/j.bbrc.2017.07.047.

    Article  CAS  PubMed  Google Scholar 

  30. Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, et al. Dissection of the mitochondrial import and assembly pathway for human Tom40. J Biol Chem. 2005;280(12):11535–43. https://doi.org/10.1074/jbc.M413816200.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Li T-E, Chen M, Xu D, Zhu Y, Hu B-Y, et al. MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming. Br J Cancer. 2020;122(2):209–20. https://doi.org/10.1038/s41416-019-0658-4.

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200. https://doi.org/10.1083/jcb.200211046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32(40):4814–24. https://doi.org/10.1038/onc.2012.494.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022. https://doi.org/10.1038/s41418-022-00962-9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008-a. https://doi.org/10.1101/cshperspect.a001008.

    Article  CAS  Google Scholar 

  36. Momeni-Boroujeni A, Dahoud W, Vanderbilt CM, Chiang S, Murali R, Rios-Doria EV, et al. Clinicopathologic and genomic analysis of TP53-mutated endometrial carcinomas. Clin Cancer Res. 2021;27(9):2613–23. https://doi.org/10.1158/1078-0432.CCR-20-4436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahoo S, Zhang X, Hondermarck H, Tanwar P. The emerging role of the microenvironment in endometrial cancer. Cancers. 2018;10(11):408. https://doi.org/10.3390/cancers10110408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren B, Cui M, Yang G, Wang H, Feng M, You L, et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17(1):108. https://doi.org/10.1186/s12943-018-0858-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Felix AS, Weissfeld J, Edwards R, Linkov F. Future directions in the field of endometrial cancer research: the need to investigate the tumor microenvironment. Eur J Gynaecol Oncol. 2010;31(2):139–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Wu X, Chen Y. Stromal-immune score-based gene signature: a prognosis stratification tool in gastric cancer. Front Oncol. 2019;9:1212. https://doi.org/10.3389/fonc.2019.01212.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jia D, Li S, Li D, Xue H, Yang D, Liu Y. Mining TCGA database for genes of prognostic value in glioblastoma microenvironment. Aging (Albany NY). 2018;10(4):592–605. https://doi.org/10.18632/aging.101415.

    Article  CAS  PubMed  Google Scholar 

  42. Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. eLife. 2017. https://doi.org/10.7554/elife.27861.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu WH, Xu Y, Wang J, Wan FN, Wang HK, Cao DL, et al. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging (Albany NY). 2019;11(17):6999–7020. https://doi.org/10.18632/aging.102233.

    Article  CAS  PubMed  Google Scholar 

  44. Chen P, Yang Y, Zhang Y, Jiang S, Li X, Wan J. Identification of prognostic immune-related genes in the tumor microenvironment of endometrial cancer. Aging. 2020;12(4):3371–87. https://doi.org/10.18632/aging.102817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next decade of immune checkpoint therapy. Cancer Discov. 2021;11(4):838–57. https://doi.org/10.1158/2159-8290.CD-20-1680.

    Article  CAS  PubMed  Google Scholar 

  46. Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res. 2021. https://doi.org/10.1186/s40364-021-00301-z.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M. Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol. 2017;232(8):2008–18. https://doi.org/10.1002/jcp.25759.

    Article  CAS  PubMed  Google Scholar 

  48. Wang W-L, Hong G-C, Chien P-J, Huang Y-H, Lee H-T, Wang P-H, et al. Tribbles pseudokinase 3 contributes to cancer stemness of endometrial cancer cells by regulating β-catenin expression. Cancers. 2020;12(12):3785. https://doi.org/10.3390/cancers12123785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsui Y-M, Chan L-K, Ng IO-L. Cancer stemness in hepatocellular carcinoma: mechanisms and translational potential. Br J Cancer. 2020;122(10):1428–40. https://doi.org/10.1038/s41416-020-0823-9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Katoh M, Katoh M. WNT signaling and cancer stemness. Essays Biochem. 2022;66(4):319–31. https://doi.org/10.1042/EBC20220016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hubbard SA, Friel AM, Kumar B, Zhang L, Rueda BR, Gargett CE. Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res. 2009;69(21):8241–8. https://doi.org/10.1158/0008-5472.CAN-08-4808.

    Article  CAS  PubMed  Google Scholar 

  52. Praharaj PP, Panigrahi DP, Bhol CS, Patra S, Mishra SR, Mahapatra KK, et al. Mitochondrial rewiring through mitophagy and mitochondrial biogenesis in cancer stem cells: a potential target for anti-CSC cancer therapy. Cancer Lett. 2021;498:217–28. https://doi.org/10.1016/j.canlet.2020.10.036.

    Article  CAS  PubMed  Google Scholar 

  53. Nangia-Makker P, Hogan V, Raz A. Galectin-3 and cancer stemness. Glycobiology. 2018;28(4):172–81. https://doi.org/10.1093/glycob/cwy001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Praharaj PP, Patro BS, Bhutia SK. Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti-cancer stem cell-targeted cancer therapy. Br J Pharmacol. 2021. https://doi.org/10.1111/bph.15401.

    Article  PubMed  Google Scholar 

  55. Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A. 2019;116(18):9020–9. https://doi.org/10.1073/pnas.1818210116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24(1):25–40. https://doi.org/10.1016/j.stem.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, et al. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med. 2022;14(1):45. https://doi.org/10.1186/s13073-022-01050-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170–85. https://doi.org/10.1016/j.cub.2018.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (NSFC:81772778).

Author information

Authors and Affiliations

Authors

Contributions

JJ and RS designed the study. RS mainly completed public database data analysis and experimental operations. CPQ and XYZ performed data analysis and drafted the manuscript. TW and YL contributed to data collection and interpretation. LNW and ZYQ oversee data quality. All authors contributed to the revision of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunping Qiu or Jie Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

Public data was obtained from the TCGA and GEO databases in accordance with the database policy. Institutional review board approval and informed consent were not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Zhou, X., Wang, T. et al. Novel insights into tumorigenesis and prognosis of endometrial cancer through systematic investigation and validation on mitophagy-related signature. Human Cell 36, 1548–1563 (2023). https://doi.org/10.1007/s13577-023-00920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00920-8

Keywords

Navigation