Skip to main content

Advertisement

Log in

Recent topics and advanced therapies in chronic granulomatous disease

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by the inability of phagocytes to produce reactive oxygen species (ROS) owing to a defect in any of the five components (CYBB/gp91phox, CYBA/p22phox, NCF1/p47phox, NCF2/p67phox, and NCF4/p40phox) and a concomitant regulatory component of Rac1/2 and CYBC1/Eros of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Patients with CGD are at an increased risk of life-threatening infections caused by catalase-positive bacteria and fungi and of inflammatory complications such as CGD colitis. Antimicrobial and azole antifungal prophylaxes have considerably reduced the incidence and severity of bacterial and improved fungal infections and overall survival. CGD studies have revealed the precise epidemiology and role of NADPH oxidase in innate immunity which has led to a new understanding of the importance of phagocyte oxygen metabolism in various host-defense systems and the fields leading to cell death processes. Moreover, ROS plays central roles in the determination of cell fate as secondary messengers and by modifying of various signaling molecules. According to this increasing knowledge about the effects of ROS on the inflammasomal system, immunomodulatory treatments, such as IFN-γ and anti-IL-1 antibodies, have been established. This review covers the current topics in CGD and the relationship between ROS and ROS-mediated pathophysiological phenomena. In addition to the shirt summary of hematopoietic stem cell transplantation and gene therapy, we introduce a novel ROS-producing enzyme replacement therapy using PEG-fDAO to compensate for NADPH oxidase deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CGD:

Chronic Granulomatous Disease

ROS:

Reactivating Oxygen Species

ASC:

Apoptosis-associated Speck-like protein containing CARD

CARD:

Caspase-recruitment domain

NLRP3:

Nod-like receptor protein 3

References

  1. Makino R, Tanaka T, Iizuka T, Ishimura Y, Kanegasaki S. Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. J Biol Chem. 1986;261:11444–7. https://doi.org/10.1016/S0021-9258(18)67262-X.

    Article  CAS  PubMed  Google Scholar 

  2. Janeway CA, Craig J, Davidson M, Downey W, Gitlin D, Sullivan JC. Hypergammaglobulinemia associated with severe, recurrent, and chronic non-specific infection. Am J Dis Child. 1954;88:388–92.

    Google Scholar 

  3. Holmes B, Quie PG, Windhorst DB, Good RA. Fatal granulomatous disease of childhood. An inborn abnormality of phagocytic function. Lancet. 1966;1:1225–8. https://doi.org/10.1016/s0140-6736(66)90238-8.

    Article  CAS  PubMed  Google Scholar 

  4. Bridges RA, Berendes H, Good RA. A fatal granulomatous disease of childhood: clinical, pathological, and laboratory features of a new syndrome. AMA J Dis Child. 1959;97:387–408. https://doi.org/10.1001/archpedi.1959.02070010389004.

    Article  CAS  PubMed  Google Scholar 

  5. Jones LBKR, McGrogan P, Flood TJ, Gennery AR, Morton L, Thrasher A, et al. Special article: chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clin Exp Immunol. 2008;152:211–8. https://doi.org/10.1111/j.1365-2249.2008.03644.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KMBE, et al. Residual NADPH oxidase activity and survival in chronic granulomatous diseases. New Engl J Med. 2010;363:2600–10. https://doi.org/10.1056/NEJMoa1007097.

    Article  CAS  PubMed  Google Scholar 

  7. Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA. Glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature. 1987;327:717–20. https://doi.org/10.1038/327717a0.

    Article  CAS  PubMed  Google Scholar 

  8. Nunoi H, Rotrosen D, Gallin JI, Malech HL. The two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosolic factors. Science. 1988;242:1298–301. https://doi.org/10.1126/science.2848319.

    Article  CAS  PubMed  Google Scholar 

  9. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH. Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest. 1990;86:1729–37. https://doi.org/10.1172/JCI114898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114:3309–15. https://doi.org/10.1182/blood-2009-07-231498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abo A, Boyhan A, West I, Thrasher AJ, Segal AW. Reconstitution of neutrophil NADPH oxidase activity in the cell-free system with four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J Biol Chem. 1992;267:16767–70. https://doi.org/10.1016/S0021-9258(18)41846-7.

    Article  CAS  PubMed  Google Scholar 

  12. Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005;386:401–16. https://doi.org/10.1042/BJ20041835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Diebold BA, Bokoch GM. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol. 2001;2:211–5. https://doi.org/10.1038/85259.

    Article  CAS  PubMed  Google Scholar 

  14. Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM-C. NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Invest. 2018;48(Suppl 2):e12951. https://doi.org/10.1111/eci.12951.

    Article  CAS  PubMed  Google Scholar 

  15. Ohayon D, De Chiara A, Dang PM-C, et al. Cytosolic PCNA interacts with p47phox and controls NOX2 activation in neutrophils. J Exp Med. 2019;216:2669–87. https://doi.org/10.1084/jem.20180371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leiding JW, Holland SM, Chronic granulomatous disease, GeneReviews® [Internet], 2016. Update

  17. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S, et al. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2015;60:1176–83. https://doi.org/10.1093/cid/ciu1154.

    Article  CAS  PubMed  Google Scholar 

  18. Raptaki M, Varela I, Spanou K, Tzanoudaki M, Tantou S, Liatsis M, et al. Chronic granulomatous disease: a 25-year patient registry based on a multistep diagnostic procedure from the referral center for primary immunodeficiencies in Greece. J Clin Immunol. 2013;33:1302–9. https://doi.org/10.1007/s10875-013-9940-z.

    Article  PubMed  Google Scholar 

  19. Wolach B, Gavrieli R, De Boer M, Gottesman G, Ben-Ari J, Rottem M, et al. Chronic granulomatous disease in Israel: clinical, functional, and molecular studies of 38 patients. Clin Immunol. 2008;129:103–14. https://doi.org/10.1016/j.clim.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  20. Winkelstein JA, Marino MC, Johnston RB, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltim). 2000;79:155–69. https://doi.org/10.1097/00005792-200005000-00003.

    Article  CAS  Google Scholar 

  21. Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S. Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiencies. Hum Genet. 2000;106:473–81. https://doi.org/10.1007/s004390000288.

    Article  CAS  PubMed  Google Scholar 

  22. Ahlin A, de Boer M, Roos D, Leusen J, Smith CI, Sundin U, et al. Prevalence, genetics, and clinical presentation of chronic granulomatous disease in Sweden. Acta Paediatr. 1995;84:1386–94. https://doi.org/10.1111/j.1651-2227.1995.tb13575.x.

    Article  CAS  PubMed  Google Scholar 

  23. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up, and outcomes of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol. 2008;126:155–64. https://doi.org/10.1016/j.clim.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Wang W-F, Zhang YD, Chen TX. Clinical features and genetic analysis of 48 patients with chronic granulomatous disease in a single-center study from Shanghai, China (2005–2015): new studies and literature review. J Immunol Res. 2017. https://doi.org/10.1155/2017/8745254.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cho M, Shin K-S. Chronic granulomatous disease on Jeju Island. Korea J Genet Med. 2013;10:1–6. https://doi.org/10.5734/JGM.2013.10.1.1.

    Article  Google Scholar 

  26. Fattahi F, Badalzadeh M, Sedighipour L, Movahedi M, Fazlollahi MR, Mansouri SD, et al. Inheritance patterns and clinical aspects of 93 Iranian patients with chronic granulomatous disease. J Clin Immunol. 2011;31:792–801. https://doi.org/10.1007/s10875-011-9567-x.

    Article  PubMed  Google Scholar 

  27. Bakri FG, Mollin M, Beaumel S, Vigne B, Roux-Buisson N, Wahadneh AM, et al. A second report of chronic granulomatous disease in Jordan: Clinical and genetic description of 31 patients from 21 different families, including families from Lybia and Iraq. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.639226.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mortaz E, Azempour E, Mansouri D, Tabarsi P, Ghazi M, Koenderman L, et al. Common infections and target organs associated with chronic granulomatous disease in Iran. Int Arch Allergy Immunol. 2019;179:62–73. https://doi.org/10.1159/000496181.

    Article  PubMed  Google Scholar 

  29. Rawat A, Vignesh P, Sudhakar M, Sharma M, Suri D, Jindal A, et al. Clinical, immunological, and molecular profiles of chronic granulomatous disease: a multi-centric study of 236 patients from India. Front Immunol. 2021;12: 625320. https://doi.org/10.3389/fimmu.2021.625320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: European experience. PLoS ONE. 2009;4: e5234. https://doi.org/10.1371/journal.pone.0005234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tarazona-Santos E, Machado M, Magalhães WC, Chen R, Lyon F, Burdett L, et al. The evolutionary dynamics of the human NADPH oxidase genes CYBB, CYBA, NCF2, and NCF4 have functional implications. Mol Biol Evol. 2013;30:2157–67. https://doi.org/10.1093/molbev/mst119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. PNAS. 2000;97(9):4654–9. https://doi.org/10.1073/pnas.080074897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 2000;96:1646–54. https://doi.org/10.1182/blood.V96.5.1646.

    Article  CAS  PubMed  Google Scholar 

  34. Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. (Letter) J Allergy Clin Immun. 2011;127:535–8. https://doi.org/10.1016/j.jaci.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  35. Natalija G, Minghui H, Carin IM, et al. The Small Rho GTPases Rac1 and Rac2 Are Important for T-Cell Independent Antigen Responses and for Suppressing Switching to IgG2b in Mice. Front Immunol. 2017;8:1264. https://doi.org/10.3389/fimmu.2017.01264.

    Article  CAS  Google Scholar 

  36. de Geer AV, Nieto-Patlán A, Kuhns DS, Tool ATJ, Arias AA, Bouaziz M, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. Clin Invest. 2018;128(9):3957–75. https://doi.org/10.1172/JCI97116.

    Article  Google Scholar 

  37. Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation that leads to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9:4447. https://doi.org/10.1038/s41467-018-06964-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blancas-Galicia L, Santos-Chávez E, Deswarte C, Mignac Q, Medina-Vera I, León-Lara X, et al. Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease. J Clin Immunol. 2020;40:475–93. https://doi.org/10.1007/s10875-020-00750-5.

    Article  CAS  PubMed  Google Scholar 

  39. de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PV, Schimke LF, et al. Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: the first report from the LASID registry. Pediatr Blood Cancer. 2015;62:2101–7. https://doi.org/10.1002/pbc.25674.

    Article  CAS  PubMed  Google Scholar 

  40. Akar HT, Esenboga S, Cagdas D, Halacli SO, Ozbek B, van Leeuwen K, et al. Clinical and immunological characteristics of 63 patients with chronic granulomatous disease: hacettepe’s experience. J Clin Immunol. 2021;41:992–1003. https://doi.org/10.1007/s10875-021-01002-w.

    Article  CAS  PubMed  Google Scholar 

  41. El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, et al. Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia. J Hum Genet. 2006;51:887–95. https://doi.org/10.1007/s10038-006-0039-8.

    Article  CAS  PubMed  Google Scholar 

  42. Meshaal S, El Hawary R, Abd Elaziz D, Alkady R, Galal N, Boutros J, et al. Chronic granulomatous disease: review of a cohort of Egyptian patients. Allergol Immunopathol (Madr). 2015;43:279–85. https://doi.org/10.1016/j.aller.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  43. Wolach B, Gavrieli R, de Boer M, Leeuwen KV, Berger-Achituv S, Stauber T, et al. Chronic granulomatous disease: clinical, functional, molecular, and genetic studies. The Israeli experience with 84 patients. Am J Hematol. 2017;92(1):28–36. https://doi.org/10.1002/ajh.24573.

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Wang T, Xiang Q, Xiao M, Cao Y, et al. Clinical and molecular features of chronic granulomatous disease in mainland China and an XL-CGD female infant after prenatal diagnosis. J Clin Immunol. 2019;39:762–75. https://doi.org/10.1007/s10875-019-00680-x.

    Article  CAS  PubMed  Google Scholar 

  45. Chiu TL, Leung D, Chan KW, Yeung HM, Wong CY, Mao H, et al. Phenomic analysis of chronic granulomatous disease reveals more severe integumentary infections in X-linked compared to autosomal recessive chronic granulomatous disease. Front Immuno. 2022;12: 803763. https://doi.org/10.3389/fimmu.2021.803763.

    Article  CAS  Google Scholar 

  46. Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species (ROS) regulate different types of cell death by acting as rheostats. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/9912436.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, et al. Superoxide-producing NAD(P)H oxidase Nox 4 in the nucleus of human vascular endothelial cells. Genes Cells. 2005;10:1139–51. https://doi.org/10.1111/j.1365-2443.2005.00907.x.

    Article  CAS  PubMed  Google Scholar 

  48. Rada B, Leto TL. Oxidative innate immune defenses are mediated by the Nox/Duox family NADPH oxidase. Contrib Microbiol. 2008;15:164–87. https://doi.org/10.1159/00013635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holmes B, Park BH, Malawista SE, Quie PG, Nelson DL, Good RA. Chronic granulomatous disease in females. New Engl J Med. 1970;283:217–21. https://doi.org/10.1056/NEJM197007302830501.

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda I, Oka Y, Taniguchi N, Furuyama M, Kodama S, Arashima S, et al. Leukocyte glutathione peroxidase deficiency in a male patient with chronic granulomatous disease. J Pediatr. 1976;88:581–3. https://doi.org/10.1016/s0022-3476(76)80010-8.

    Article  CAS  PubMed  Google Scholar 

  51. Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007;2:16. https://doi.org/10.1186/1750-1172-2-16.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Amara N, Cooper MP, Voronkova MA, Webb BA, Lynch EM, Kollman JM, et al. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell. 2021;184:4480-94.e15. https://doi.org/10.1016/j.cell.2021.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas DC. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med. 2018;125:44–52. https://doi.org/10.1016/j.freeradbiomed.2018.06.011.

    Article  CAS  PubMed  Google Scholar 

  54. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase, and oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–86. https://doi.org/10.1128/MCB.24.19.8477-8486.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartl D, Lehmann N, Hoffmann F, Jasson A, Hector A, Notheis G, et al. Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease. J Allergy Clin Immunol. 2008;121:375–82. https://doi.org/10.1016/j.jaci.2007.10.037.

    Article  CAS  PubMed  Google Scholar 

  56. McLetchie SM, Volpp BD, Dinauer MC, Blum JS. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts. Immunology. 2015;146(4):595–606. https://doi.org/10.1111/imm.12530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Galluzzi L, Vitale I, Aaronson SA, Abrams J, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rieber N, Hector A, Kuijpers T, Roos D, Hartl D. Current concepts of hyperinflammation in chronic granulomatous disease. Clin Dev Immunol. 2012. https://doi.org/10.1155/2012/252460.

    Article  PubMed  Google Scholar 

  59. Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, Marciano BE, Frasch SC, Henson PM, et al. Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol. 2015;136:1399-401.E3. https://doi.org/10.1016/j.jaci.2015.07.034.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bylund J, Campsall PA, Ma RC, Conway BAD, Barbara-Ann D. Speert CDP, Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous diseases. J Immunol. 2005;174:3562–9. https://doi.org/10.4049/jimmunol.174.6.3562.

    Article  CAS  PubMed  Google Scholar 

  61. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109. https://doi.org/10.1038/nrmicro2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlisky A. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood. 2010;116:1570–3. https://doi.org/10.1182/blood-2010-01-264218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ryu JC, Kim MJ, Kwon Y, Oh JH, Yoon SS, Shin SJ, et al. Neutrophil pyroptosis mediates the pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 2017;10:757–74. https://doi.org/10.1038/mi.2016.73.

    Article  CAS  PubMed  Google Scholar 

  64. Wang X, Shida Y, Simon H-U. Necroptosis and neutrophil-associated disorders. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-017-0058-8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Weindel CG, Martinez LE, Zhao X, Mabry CJ, Bell SL, Vail KJ, et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell. 2022;185(17):3214-3231.e23. https://doi.org/10.1016/j.cell.2022.06.038.

    Article  CAS  PubMed  Google Scholar 

  66. Wang X, He Z, Liu H, Shida Y, Simon H-U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J Immunol. 2016;197:4090–100. https://doi.org/10.4049/jimmunol.1600051.

    Article  CAS  PubMed  Google Scholar 

  67. Mihalache CC, Yousefi S, Conus S, Villiger PM, Schneider EM, Simon HU. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J Immunol. 2011;186(11):6532–42. https://doi.org/10.4049/jimmunol.1004055.

    Article  CAS  PubMed  Google Scholar 

  68. Kenny EF, Herzig A, Krüger R, Muth A, Mondal S, Thompson PR, et al. Diverse stimuli are engaged in different neutrophil extracellular trap pathways. Cell Biol Immunol Inflamm. 2017;6: e24437. https://doi.org/10.7554/eLife.24437.

    Article  Google Scholar 

  69. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 during NET formation. Front Immunol. 2012;3:360. https://doi.org/10.3389/fimmu.2012.00360.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114:2619–22. https://doi.org/10.1182/blood-2009-05-221606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hule Gouri P, Bargir UA, Kulkarni M, Kambli P, Taur P, Desai M, et al. Does pioglitazone lead to neutrophil extracellular trap formation in chronic granulomatous disease patients? Front Immunol. 2019;10:1739. https://doi.org/10.3389/fimmu.2019.01739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical autophagy: one small step for LC3, a giant leap for immunity. Curr Opin Immunol. 2014;26:69–75. https://doi.org/10.1016/j.coi.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  73. Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microb. 2016;19:79–90. https://doi.org/10.1016/j.chom.2015.12.002.

    Article  CAS  Google Scholar 

  74. Buffen K, Oosting M, Mennens S, Anand PK, Plantinga TS, Sturm P, et al. Autophagy modulates Borrelia burgdorferi-induced production of interleukin-1β (IL-1β). J Biol Chem. 2013;288:8658–66. https://doi.org/10.1074/jbc.M112.412841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Luca A, Smeekens PS, Casagrande A, Anand PK, Plantinga TS, Sturm P, et al. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci USA. 2014;9:3526–31. https://doi.org/10.1073/pnas.1322831111.

    Article  CAS  Google Scholar 

  76. Oikonomou V, Moretti S, Renga G, Galosi C, Borghi M, Pariano M, et al. Non-canonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1. Cell Host Microb. 2016;20:744–57. https://doi.org/10.1016/j.chom.2016.10.012.

    Article  CAS  Google Scholar 

  77. Güngör T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched hematopoietic stem cell transplantation in patients with chronic granulomatous disease: a prospective multicenter study. Lancet. 2014;383:436–48. https://doi.org/10.1016/S0140-6736(13)62069-3.

    Article  CAS  PubMed  Google Scholar 

  78. Yanagimachi M, Kato K, Iguchi A, Sasaki K, Kiyotani C, Koh K, et al. Hematopoietic cell transplantation for chronic granulomatous disease in Japan. Front Immunol. 2020;11:1617. https://doi.org/10.3389/fimmu.2020.01617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yonkof JR, Gupta A, Pingfu F, Garabedian E, Dalal J, The United States immunodeficiency network Consortium. Role of allogeneic hematopoietic stem cell transplant for chronic granulomatous disease (CGD): a report of the United States immunodeficiency network. J Clin Immunol. 2019;39:448–58. https://doi.org/10.1007/s10875-019-00635-2.

    Article  CAS  PubMed  Google Scholar 

  80. Lankester AC, Albert MH, Booth C, Gennery AR, Güngör T, Hönig M, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant. 2021;56:2052–62. https://doi.org/10.1038/s41409-021-01378-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy in chronic granulomatous disease. Proc Natl Acad Sci USA. 1997;94:12133–8. https://doi.org/10.1073/pnas.94.22.12133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Miller AD, Metzger MJ. APOBEC3-mediated hypermutation of retroviral vectors produced from some retrovirus packaging cell lines. Gene Ther. 2011;18:528–30. https://doi.org/10.1038/gt.2010.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Santilli G, Almarza E, Brendel C, Choi U, Beilin C, Blundell MP, et al. Biochemical correction of X-CGD using a novel chimeric promoter that regulates high levels of transgene expression in myeloid cells. Mol Ther. 2011;19:122–32. https://doi.org/10.1038/mt.2010.226.

    Article  CAS  PubMed  Google Scholar 

  84. Chiriaco M, Farinelli G, Capo V, Zonari E, Scaramuzza S, Di Matteo G, et al. Dual-regulated lentiviral vectors for gene therapy of X-linked chronic granulomatosis. Mol Ther. 2014;22:1472–83. https://doi.org/10.1038/mt.2014.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kohn DB, Booth C, Kang EM, Pai SY, Shaw KL, Santilli G, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med [epub]. 2020;26:200–6. https://doi.org/10.1038/s41591-019-0735-5.

    Article  CAS  PubMed  Google Scholar 

  86. Sweeney CL, Pavel-Dinu M, Choi U, Brault J, Liu T, Koontz S, et al. Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Ther. 2021;28:373–90. https://doi.org/10.1038/s41434-021-00251-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ries M. Enzyme replacement therapy and beyond-in memoriam Roscoe O. Brady, M.D. (1923–2016). J Inherit Metab Dis. 2017;40:343–56. https://doi.org/10.1007/s10545-017-0032-8.

    Article  CAS  PubMed  Google Scholar 

  88. Braulke T, Bonifacino JS. Sorting of lysosomal proteins. Biochim Biophys Acta. 2009;1793:605–14. https://doi.org/10.1016/j.bbamcr.2008.10.016.

    Article  CAS  PubMed  Google Scholar 

  89. Abuchowski A, van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;252:3578–81. https://doi.org/10.1016/S0021-9258(17)40291-2.

    Article  CAS  PubMed  Google Scholar 

  90. Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of short- and medium-term safety. Mol Ther. 2018;26:917–31. https://doi.org/10.1016/j.ymthe.2017.12.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brault J, Vaganay G, Le Roy A, Lenormand J-L, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. J Nanomed. 2017;12:2161–77. https://doi.org/10.2147/IJN.S128611.

    Article  CAS  Google Scholar 

  92. Nathan CF, Cohn ZA. Antitumor effects of hydrogen peroxide in vivo. J Exp Med. 1981;154:1539–53. https://doi.org/10.1084/jem.154.5.1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ben-Yoseph O, Ross BD. Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer. 1994;70:1131–5. https://doi.org/10.1038/bjc.1994.460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sawa T, Wu J, Akaike T, Maeda H. Tumor-targeting chemotherapy by a xanthine oxidase-polymer conjugate that generates oxygen-free radicals in tumor tissue. Cancer Res. 2000;60:666–71.

    CAS  PubMed  Google Scholar 

  95. Maeda H. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect. Cancer Sci. 2013;104:779–89. https://doi.org/10.1111/cas.12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nakamura H, Fang J, Mizukami T, Nunoi H, Maeda H. Pegylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite. EBM. 2012;237:703–8. https://doi.org/10.1258/ebm.

    Article  CAS  Google Scholar 

  97. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6. https://doi.org/10.1016/j.addr.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  98. Endo D, Fujimoto K, Hirose R, Yamanaka H, Homme M, Ishibashi KI, et al. Genetic phagocyte NADPH oxidase deficiency enhances nonviable Candida albicans-induced inflammation in mouse lungs. Inflammation. 2017;40:123–35. https://doi.org/10.1007/s10753-016-0461-9.

    Article  CAS  PubMed  Google Scholar 

  99. Nunoi H, Xie P, Nakamura H, Aratani Y, Fang J, Nishimura T, et al. Treatment with polyethylene glycol–conjugated fungal D-amino acid oxidase reduces lung inflammation in a mouse model of chronic granulomatous disease. Inflammation. 2022;45:1668–79. https://doi.org/10.1007/s10753-022-01650-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the late Professor Emeritus Hiroshi Maeda of Sojo University (the late Director of BioDynamics Research Foundation in Kumamoto) for his proposal of the basic concept of enzyme replacement therapy with PEGylated DAO for the treatment of CGD. We would also like to thank tProfessor Emeritus Shiro Kanegasaki of The University of Tokyo for his critical reading and Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Nunoi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_846_MOESM1_ESM.pptx

Supplementary file1 Supplementary Fig.1: Prevalence of CGD in Japan. Patients with CGD in Japan were registered between the 1960s and 2016. Prevalence was calculated as 6.09 +/- 2.15 patients/million births/year from1982 to 2013, which means one patients/121~254 X 103 births. Supplementary Table 1: Comparison of CGD subtypes between Japan and NIH US. Until January 2016, 378 patients with CGD were registered in Japan. CGD subtype was analyzed by flow cytometry or wester blotting, which was compared with the report of NIH (N Engl J Med 363(27):2600-2610,2010). Figures in parentheses show patients diagnosed by gene analysis (PPTX 55 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunoi, H., Nakamura, H., Nishimura, T. et al. Recent topics and advanced therapies in chronic granulomatous disease. Human Cell 36, 515–527 (2023). https://doi.org/10.1007/s13577-022-00846-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00846-7

Keywords

Navigation