Skip to main content

Advertisement

Log in

Overexpression of PYGO1 promotes early cardiac lineage development in human umbilical cord mesenchymal stromal/stem cells by activating the Wnt/β-catenin pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cardiovascular disease still has the highest mortality. Gene‐modified mesenchymal stromal/stem cells could be a promising therapy. Pygo plays an important role in embryonic development and regulates life activities with a variety of regulatory mechanisms. Therefore, this study aimed to investigate whether the overexpression of the PYGO1 gene can promote the differentiation of human umbilical cord-derived mesenchymal stromal/stem cells (HUC-MSCs) into early cardiac lineage cells and to preliminary explore the relevant mechanisms. In this study, HUC-MSCs were isolated by the explant method and were identified by flow cytometry and differentiation assay, followed by transfected with lentivirus carrying the PYGO1 plasmid. In PYGO1 group (cells were incubated with lentiviral-PYGO1), the mRNA expressions of cardiac differentiation-specific markers (MESP1, NKX2.5, GATA4, MEF2C, ISL1, TBX5, TNNT2, ACTC1, and MYH6 genes) and the protein expressions of NKX2.5 and cTnT were significantly up-regulated compared with the NC group (cells were incubated with lentiviral-empty vector). In addition, the proportion of NKX2.5, GATA4, and cTnT immunofluorescence-positive cells increased with the inducement time. Overexpression of PYGO1 statistically significantly increased the relative luciferase expression level of Topflash plasmid, the protein expression level of β-catenin and the mRNA expression level of CYCLIND1. Compared with the control group, decreased protein levels of NKX2.5 and cTnT were detected in PYGO1 group after application of XAV-939, the specific inhibitor of the canonical Wnt/β-catenin pathway. Our study suggests that overexpression of PYGO1 significantly promotes the differentiation of HUC-MSCs into early cardiac lineage cells, which is regulated by the canonical Wnt/β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zou Z, Cini K, Dong B, Ma Y, Ma J, Burgner DP, Patton GC. Time trends in cardiovascular disease mortality across the BRICS: an age-period-cohort analysis of key nations with emerging economies using the global burden of disease study 2017. Circulation. 2020;141:790–9. https://doi.org/10.1161/CIRCULATIONAHA.119.042864.

    Article  PubMed  Google Scholar 

  2. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi J-Y, Christensen H, Cirillo M, Cooper L, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed ZM, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang Y-H, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin M-J, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Terashvili M, Bosnjak ZJ. Stem cell therapies in cardiovascular disease. J Cardiothorac Vasc Anesth. 2019;33:209–22. https://doi.org/10.1053/j.jvca.2018.04.048.

    Article  PubMed  Google Scholar 

  4. Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials. Curr Cardiol Rev. 2017;13:223–31. https://doi.org/10.2174/1573403X13666170502103833.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lalu MM, Mazzarello S, Zlepnig J, Dong YYR, Montroy J, McIntyre L, Devereaux PJ, Stewart DJ, David Mazer C, Barron CC, McIsaac DI, Fergusson DA. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): a systematic review and meta-analysis. Stem Cells Transl Med. 2018;7:857–66. https://doi.org/10.1002/sctm.18-0120.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Yang J, Tian Y-M, Guo H, Zhang Y. Beneficial effects of hypoxic preconditioning on human umbilical cord mesenchymal stem cells. Chin J Physiol. 2015;58:343–53. https://doi.org/10.4077/CJP.2015.BAE369.

    Article  CAS  PubMed  Google Scholar 

  7. Abou-ElNaga A, El-Chennawi F, Ibrahim Kamel S, Mutawa G. The potentiality of human umbilical cord isolated mesenchymal stem/stromal cells for cardiomyocyte generation. Stem Cells Cloning Adv Appl. 2020. https://doi.org/10.2147/SCCAA.S253108.

    Article  Google Scholar 

  8. Shinmura D, Togashi I, Miyoshi S, Nishiyama N, Hida N, Tsuji H, Tsuruta H, Segawa K, Tsukada Y, Ogawa S, Umezawa A. Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells (Dayton, Ohio). 2011;29:357–66. https://doi.org/10.1002/stem.574.

    Article  CAS  Google Scholar 

  9. Cristallini C, Cibrario Rocchietti E, Accomasso L, Folino A, Gallina C, Muratori L, Pagliaro P, Rastaldo R, Raimondo S, Saviozzi S, Sprio AE, Gagliardi M, Barbani N, Giachino C. The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials. 2014. https://doi.org/10.1016/j.biomaterials.2013.09.058.

    Article  PubMed  Google Scholar 

  10. Jin G, Li W, Song F, Zhao J, Wang M, Liu Q, Li A, Huang G, Xu F. Fluorescent conjugated polymer nanovector for in vivo tracking and regulating the fate of stem cells for restoring infarcted myocardium. Acta Biomater. 2020;109:195–207. https://doi.org/10.1016/j.actbio.2020.04.010.

    Article  CAS  PubMed  Google Scholar 

  11. Ruan Z, Zhu L, Yin Y, Chen G. Overexpressing NKx2.5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells. Biomed Pharmacother. 2016;78:110–5. https://doi.org/10.1016/j.biopha.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Zhou Q, Yi Q, Tan B, Tian J, Chen X, Wang Y, Yu X, Zhu J. Islet-1 synergizes with Gcn5 to promote MSC differentiation into cardiomyocytes. Sci Rep. 2020;10:1817. https://doi.org/10.1038/s41598-020-58387-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Chen X, Liu C, Li J, Liu F, Huang Y. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed Pharmacother. 2018;108:508–14. https://doi.org/10.1016/j.biopha.2018.09.047.

    Article  CAS  PubMed  Google Scholar 

  14. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell. 2002;109:47–60. https://doi.org/10.1016/s0092-8674(02)00679-7.

    Article  CAS  PubMed  Google Scholar 

  15. Song N, Schwab KR, Patterson LT, Yamaguchi T, Lin X, Potter SS, Lang RA. pygopus 2 has a crucial, Wnt pathway-independent function in lens induction. Development (Cambridge, England). 2007;134:1873–85. https://doi.org/10.1242/dev.001495.

    Article  CAS  Google Scholar 

  16. Cantù C, Valenta T, Hausmann G, Vilain N, Aguet M, Basler K. The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development (Cambridge, England). 2013;140:2377–86. https://doi.org/10.1242/dev.093591.

    Article  CAS  Google Scholar 

  17. Cantù C, Pagella P, Shajiei TD, Zimmerli D, Valenta T, Hausmann G, Basler K, Mitsiadis TA. A cytoplasmic role of Wnt/β-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Sci Signal. 2017;10: eaah598. https://doi.org/10.1126/scisignal.aah4598.

    Article  CAS  Google Scholar 

  18. Shi Y, Wu X, Zhu S, Huang H, Zhuang J, Yuan H, Yuan W, Zhu P. Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans. 2020;48:1781–94. https://doi.org/10.1042/BST20200393.

    Article  CAS  PubMed  Google Scholar 

  19. De D, Chen A, Wu Z, Lv S, He G, Qi Y. Overexpression of Pygopus2 protects HeLa cells from vinblastine-induced apoptosis. Biol Chem. 2009;390:157–65. https://doi.org/10.1515/BC.2009.014.

    Article  CAS  PubMed  Google Scholar 

  20. Miller TCR, Mieszczanek J, Sánchez-Barrena MJ, Rutherford TJ, Fiedler M, Bienz M. Evolutionary adaptation of the fly Pygo PHD finger toward recognizing histone H3 tail methylated at arginine 2. Structure. 2013;21:2208–20. https://doi.org/10.1016/j.str.2013.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13:1738–55. https://doi.org/10.1002/term.2914.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi K, Suzuki K. Mesenchymal stem/stromal cell-based therapy for heart failure—what is the best source? Circ J. 2018;82:2222–32. https://doi.org/10.1253/circj.CJ-18-0786.

    Article  CAS  PubMed  Google Scholar 

  23. Lim M, Wang W, Liang L, Han Z-B, Li Z, Geng J, Zhao M, Jia H, Feng J, Wei Z, Song B, Zhang J, Li J, Liu T, Wang F, Li T, Li J, Fang Y, Gao J, Han Z. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther. 2018;9:129. https://doi.org/10.1186/s13287-018-0888-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao LR, Chen Y, Zhang NK, Yang XL, Liu HL, Wang ZG, Yan XY, Wang Y, Zhu ZM, Li TC, Wang LH, Chen HY, Chen YD, Huang CL, Qu P, Yao C, Wang B, Chen GH, Wang ZM, Xu ZY, Bai J, Lu D, Shen YH, Guo F, Liu MY, Yang Y, Ding YC, Yang Y, Tian HT, Ding QA, Li LN, Yang XC, Hu X. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med. 2015;13:162. https://doi.org/10.1186/s12916-015-0399-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu CB, Huang H, Sun P, Ma SZ, Liu AH, Xue J, Fu JH, Liang YQ, Liu B, Wu DY, Lü SH, Zhang XZ. Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med. 2016;5:1004–13. https://doi.org/10.5966/sctm.2015-0298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  27. Lescroart F, Chabab S, Lin X, Rulands S, Paulissen C, Rodolosse A, Auer H, Achouri Y, Dubois C, Bondue A, Simons BD, Blanpain C. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat Cell Biol. 2014;16:829–40. https://doi.org/10.1038/ncb3024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burridge PW, Sharma A, Wu JC. Genetic and epigenetic regulation of human cardiac reprogramming and differentiation in regenerative medicine. Annu Rev Genet. 2015;49:461–84. https://doi.org/10.1146/annurev-genet-112414-054911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gessert S, Kühl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res. 2010;107:186–99. https://doi.org/10.1161/CIRCRESAHA.110.221531.

    Article  CAS  PubMed  Google Scholar 

  30. Evans AL, Faial T, Gilchrist MJ, Down T, Vallier L, Pedersen RA, Wardle FC, Smith JC. Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS One. 2012;7: e33346. https://doi.org/10.1371/journal.pone.0033346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Yu W, Cooney AJ, Schwartz RJ, Liu Y. Brief report: Oct4 and canonical Wnt signaling regulate the cardiac lineage factor Mesp1 through a Tcf/Lef-Oct4 composite element. Stem Cells (Dayton, Ohio). 2013;31:1213–7. https://doi.org/10.1002/stem.1362.

    Article  CAS  Google Scholar 

  32. Klaus A, Müller M, Schulz H, Saga Y, Martin JF, Birchmeier W. Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci USA. 2012;109:10921–6. https://doi.org/10.1073/pnas.1121236109.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai C-L, Bu L, Yang L, Martin J, Kemler R, Rosenfeld MG, Chen J, Evans SM. Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA. 2007;104:9313–8. https://doi.org/10.1073/pnas.0700923104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen ED, Wang Z, Lepore JJ, Lu MM, Taketo MM, Epstein DJ, Morrisey EE. Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. J Clin Investig. 2007;117:1794–804. https://doi.org/10.1172/JCI31731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X. pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development (Cambridge, England). 2002;129:4089–101.

    Article  CAS  Google Scholar 

  36. Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS. Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol. 2007;5:15. https://doi.org/10.1186/1741-7007-5-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nair M, Nagamori I, Sun P, Mishra DP, Rhéaume C, Li B, Sassone-Corsi P, Dai X. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320:446–55. https://doi.org/10.1016/j.ydbio.2008.05.553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li B, Rhéaume C, Teng A, Bilanchone V, Munguia JE, Hu M, Jessen S, Piccolo S, Waterman ML, Dai X. Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis. 2007;45:318–25. https://doi.org/10.1002/dvg.20299.

    Article  CAS  PubMed  Google Scholar 

  39. Tang M, Yuan W, Bodmer R, Wu X, Ocorr K. The role of pygopus in the differentiation of intracardiac valves in Drosophila. Genesis. 2014;52:19–28. https://doi.org/10.1002/dvg.22724.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants of the National Natural Science Foundation of China (81970248); the Graduate research innovation project of Central South University (2020zzts888); the Research Team Project of Natural Science Foundation of Guangdong Province of China (2017A030312007), and the Key Program of Guangzhou Science Research Plan (805212639211).

Author information

Authors and Affiliations

Authors

Contributions

JS: performed the experiments, analyzed and interpreted the data, and wrote the initial manuscript. XW, PZ, and JZ: conceived the experiments. BQ and FS: provided assistances for experiments. WY, XF, ZJ, FL, YL, and YW: contributed to manuscript correction. MZ: conceptualized and guaranteed the research. All authors approved the final manuscript as submitted and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Mingyi Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the third Xiangya hospital of Central South University (No: 20042).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Wu, X., Zhu, P. et al. Overexpression of PYGO1 promotes early cardiac lineage development in human umbilical cord mesenchymal stromal/stem cells by activating the Wnt/β-catenin pathway. Human Cell 35, 1722–1735 (2022). https://doi.org/10.1007/s13577-022-00777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00777-3

Keywords

Navigation