Skip to main content
Log in

Pirfenidone promotes the levels of exosomal miR-200 to down-regulate ZEB1 and represses the epithelial-mesenchymal transition of non-small cell lung cancer cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer (NSCLC) is the malignancy with highest mortality and morbidity. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells in the tumor microenvironment of NSCLC. This research is performed to explore the biological functions of pirfenidone (PFD) to repress the malignant phenotypes of NSCLC cells, and its regulatory effects on exosomal microRNA-200 (exo-miR-200) derived from CAFs. In the present work, we report that, exo-miR-200 secreted by CAFs restrains the migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells; PFD treatment promotes the secretion of exo-miR-200 from CAFs and enhances the tumor-suppressive properties of exo-miR-200 on NSCLC cells; zinc finger E-box binding homeobox 1 (ZEB1) is identified as a target of miR-200, and PFD treatment repressed the expression of ZEB1 in NSCLC cells via inducing the expression and secretion of miR-200 in CAFs. In conclusion, PFD-induced miR-200 overexpression in CAFs inhibits ZEB1 expression in NSCLC cells, and thus decelerates the migration, invasion and EMT process. Our study may provide clues for the treatment of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Tandberg DJ, et al. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: a comprehensive review. Cancer. 2018;124(4):667–78.

    Article  Google Scholar 

  2. Zhang C, et al. Application of artificial intelligence in respiratory medicine. J Digit Health. 2022;1(1):30–9.

    Article  Google Scholar 

  3. Jonna S, Subramaniam DS. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update. Discov Med. 2019;27(148):167–70.

    PubMed  Google Scholar 

  4. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101(1):147–76.

    Article  CAS  Google Scholar 

  5. Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 2019;120(3):2782–90.

    Article  CAS  Google Scholar 

  6. Schoepp M, Ströse AJ, Haier J. Dysregulation of miRNA expression in cancer associated fibroblasts (CAFs) and its consequences on the tumor microenvironment. Cancers (Basel). 2017;9(6):54.

    Article  Google Scholar 

  7. Saito A, et al. The role of TGF-β signaling in lung cancer associated with idiopathic pulmonary fibrosis. Int J Mol Sci. 2018;19(11):3611.

    Article  Google Scholar 

  8. Kozono S, et al. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 2013;73(7):2345–56.

    Article  CAS  Google Scholar 

  9. Kanayama M, et al. Perioperative pirfenidone treatment for lung cancer patients with idiopathic pulmonary fibrosis. Surg Today. 2020;50(5):469–74.

    Article  Google Scholar 

  10. Qin W, et al. Pirfenidone facilitates immune infiltration and enhances the antitumor efficacy of PD-L1 blockade in mice. Oncoimmunology. 2020;9(1):1824631.

    Article  Google Scholar 

  11. Ishii K, et al. Pirfenidone, an anti-fibrotic drug, suppresses the growth of human prostate cancer cells by inducing G1 cell cycle arrest. J Clin Med. 2019;8(1):44.

    Article  CAS  Google Scholar 

  12. Zou WJ, et al. Pirfenidone inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells by inhibiting the Wnt/β-catenin signaling pathway. Med Sci Monit. 2017;23:6107–13.

    Article  CAS  Google Scholar 

  13. Krämer M, et al. Pirfenidone inhibits motility of NSCLC cells by interfering with the urokinase system. Cell Signal. 2020;65: 109432.

    Article  Google Scholar 

  14. Yamamoto Y, et al. Safety and effectiveness of pirfenidone combined with carboplatin-based chemotherapy in patients with idiopathic pulmonary fibrosis and non-small cell lung cancer: a retrospective cohort study. Thorac Cancer. 2020;11(11):3317–25.

    Article  CAS  Google Scholar 

  15. AboulkheyrEs H, et al. Pirfenidone reduces immune-suppressive capacity of cancer-associated fibroblasts through targeting CCL17 and TNF-beta. Integr Biol (Camb). 2020;12(7):188–97.

    Article  Google Scholar 

  16. Sun L, et al. LncRNA IUR downregulates ZEB1 by upregulating miR-200 to inhibit prostate carcinoma. Physiol Genom. 2019;51(11):607–11.

    Article  CAS  Google Scholar 

  17. Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–7.

    Article  CAS  Google Scholar 

  18. Larsen JE, et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest. 2016;126(9):3219–35.

    Article  Google Scholar 

  19. Liu J, et al. The fibrotic microenvironment promotes the metastatic seeding of tumor cells into the lungs via mediating the ZEB1-AS1/miR-200b-3p/ZEB1 signaling. Cell Cycle. 2020;19(20):2701–19.

    Article  CAS  Google Scholar 

  20. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.

    Article  CAS  Google Scholar 

  21. Francesco E, et al. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15(4):R64.

    Article  Google Scholar 

  22. Wang K, et al. Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biol. 2017;60:86–95.

    Article  Google Scholar 

  23. Es HA, et al. Pirfenidone reduces epithelial-mesenchymal transition and spheroid formation in breast carcinoma through targeting cancer-associated fibroblasts (CAFs). Cancers. 2021;13(20):5118.

    Article  CAS  Google Scholar 

  24. Wang L, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget. 2017;8(44):76116–28.

    Article  Google Scholar 

  25. Lancaster LH, et al. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev. 2017;26(146):170057.

  26. Noble PW, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377(9779):1760–9.

    Article  CAS  Google Scholar 

  27. King TE Jr, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.

    Article  Google Scholar 

  28. Schelegle ES, Mansoor JK, Giri S. Pirfenidone attenuates bleomycin-induced changes in pulmonary functions in hamsters. Proc Soc Exp Biol Med. 1997;216(3):392–7.

    Article  CAS  Google Scholar 

  29. Marwitz S, et al. The multi-modal effect of the anti-fibrotic drug pirfenidone on NSCLC. Front Oncol. 2019;9:1550.

    Article  Google Scholar 

  30. Fujiwara A, et al. Effects of pirfenidone targeting the tumor microenvironment and tumor-stroma interaction as a novel treatment for non-small cell lung cancer. Sci Rep. 2020;10(1):10900.

    Article  CAS  Google Scholar 

  31. de Sousa MC, et al. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019;20(24):6249.

    Article  Google Scholar 

  32. Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targ. 2018;18(3):266–77.

    Article  CAS  Google Scholar 

  33. Gregory PA, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.

    Article  CAS  Google Scholar 

  34. Zhou R, et al. Aberrant miR-21 and miR-200b expression and its pro-fibrotic potential in hypertrophic scars. Exp Cell Res. 2015;339(2):360–6.

    Article  CAS  Google Scholar 

  35. Nishijima N, et al. miR-200/ZEB axis regulates sensitivity to nintedanib in non-small cell lung cancer cells. Int J Oncol. 2016;48(3):937–44.

    Article  CAS  Google Scholar 

  36. Zhang N, et al. Decitabine reverses TGF-β1-induced epithelial-mesenchymal transition in non-small-cell lung cancer by regulating miR-200/ZEB axis. Drug Des Dev Ther. 2017;11:969–83.

    Article  CAS  Google Scholar 

  37. Kurimoto R, et al. Pirfenidone may revert the epithelial-to-mesenchymal transition in human lung adenocarcinoma. Oncol Lett. 2017;14(1):944–50.

    Article  CAS  Google Scholar 

  38. Xue B, et al. miR-200 deficiency promotes lung cancer metastasis by activating Notch signaling in cancer-associated fibroblasts. Genes Dev. 2021;35(15–16):1109–22.

    Article  Google Scholar 

  39. Liu C, et al. Roles of miR-200 family members in lung cancer: more than tumor suppressors. Future Oncol. 2018;14(27):2875–86.

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by Natural Science Foundation of Hunan Province Youth Fund Project (2020JJ5912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Yang.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing financial interests.

Consent for publication

Not applicable.

Ethical standards

The study was performed in accordance with the Declaration of Helsinki and obtained the approval from the Ethics Committee of Xiangya Hospital (Approval no. 2016A0388).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 359 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Cao, L., Li, Y. et al. Pirfenidone promotes the levels of exosomal miR-200 to down-regulate ZEB1 and represses the epithelial-mesenchymal transition of non-small cell lung cancer cells. Human Cell 35, 1813–1823 (2022). https://doi.org/10.1007/s13577-022-00766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00766-6

Keywords

Navigation