Skip to main content
Log in

Molecular diversity and genetic variability of kernel tocopherols among maize inbreds possessing favourable haplotypes of γ-tocopherol methyl transferase (ZmVTE4)

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vitamin E deficiency is a serious health concern in humans. Biofortification of maize kernel with high vitamin E (α-tocopherol) provides sustainable and cost-effective solution. Here, a set of 24 inbreds possessing favourable alleles of γ-tocopherol methyl transferase (ZmVTE4) was analyzed. Significant variation for α-tocopherol (10.08–32.74 µg/g), γ-tocopherol (4.80–53.09 µg/g), δ-tocopherol (1.06–11.89 µg/g) and total tocopherol (20.18–97.72 µg/g) was observed. The mean α-tocopherol in the ZmVTE4-favourable genotypes was 20.23 µg/g compared to 4.75 µg/g in the unfavourable genotype. α-, γ- and δ-tocopherol constituted 39%, 48% and 13% of the total tocopherols, respectively, among positive lines. Molecular characterization of 24 lines using 80 SSRs generated 217 alleles. Wide variation was observed for PIC (0.08–0.73), gene diversity (0.08–0.76), major allele frequency (0.33–0.96) and dissimilarity coefficient (0.37–0.77). Cluster diagram grouped the inbreds into three distinct clusters consistent with the lineage. The study identified a set of potential cross combinations to develop high yielding hybrids enriched with vitamin E, and map additional gene(s) affecting accumulation of α-tocopherol. This is the first report on biochemical- and molecular- characterization of sub-tropically adapted inbreds with ZmVTE4-favourable allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SSR:

Simple Sequence Repeat

PIC:

Polymorphism Information Content

PCoA:

Principle Coordinate Analysis

PCR:

Polymerase Chain Reaction

References

  • Chakraborti M, Prasanna BM, Hossain F, Mazumdar S, Singh AM, Guleria SK, Gupta HS (2011) Identification of kernel iron- and zinc-rich maize inbreds and analysis of genetic diversity using microsatellite markers. J Plant Biochem Biotechnol 20:224–233

    Article  CAS  Google Scholar 

  • Chander S, Meng Y, Zhang Y, Yan J, Li J (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. J Agric Food Chem 56:6506–6511

    Article  CAS  PubMed  Google Scholar 

  • Choudhary M, Hossain F, Muthusamy V, Thirunavukkarasu N, Saha S, Pandey N, Jha SK, Gupta HS (2015) Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-015-0300-3

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. https://doi.org/10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Das AK, Singh NK (2012) Carotenoid and SSR marker-based diversity assessment among short duration maize (Zea mays L.) genotypes. Maydica 57:106–113

    Google Scholar 

  • Diepenbrock CH, Kandianis CB, Lipka AE, Lundback MM, Vaillancourt B, Castillo EG, Wallace JG, Cepela J, Mesberg A, Bradbury PJ, Ilut DC, Hernandez MM, Hamilton J, Owens BF, Tiede T, Buckler ES, Rocheford T, Buell CR, Gore MA, DellaPenna D (2017) Novel loci underlie natural variation in vitamin E levels in maize grain. Plant Cell. https://doi.org/10.1105/tpc.17.00475

    Article  PubMed  PubMed Central  Google Scholar 

  • Evano G, Regnuat S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Feng F, Deng F, Zhou P, Yan J, Wang Q, Yang R, Li X (2013) QTL mapping for the tocopherols at milk stage of kernel development in sweet corn. Euphytica 193:409–417. https://doi.org/10.1007/s10681-013-0948-5

    Article  CAS  Google Scholar 

  • Fenton ME, Owens BF, Lipka AE, Ortiz D, Tiede T, Mateos-Hernandez M, Ferruzzi MG, Rocheford T (2018) High-density linkage mapping of vitamin E content in maize grain. Mol Breed 38:3. https://doi.org/10.1007/s11032-018-0780-7

    Article  CAS  Google Scholar 

  • Global Nutrition Report (2017) Nourishing the SDGs. Development Initiatives, Bristol

    Google Scholar 

  • Grams GW, Blessin CW, Inglett GE (1970) Distribution of tocopherols within the corn kernel. J American Oil Chem Soc 47:337–339. https://doi.org/10.1007/BF02638997

    Article  CAS  Google Scholar 

  • Institute of Medicine (2000) Food and nutrition board: dietary reference intakes: applications in dietary assessment. National Academy Press, Washington, DC, p 289

    Google Scholar 

  • Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Li L, Zhang Z, Gao S, Li J, Yan J (2012) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One 7:e36807. https://doi.org/10.1371/journal.pone.0036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G (2017) Genetic variation of carotenoids, vitamin E and phenolic compounds in provitamin A biofortified maize. J Sci Food Agric 97:793–801

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski MF, David J, Santoni S, McKhann H, Reboud X, Corre VL, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T (2006) Evidence for a large-scale population structure among accessions of A. thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Hossain F, Kumar K, Vishwakarma AK, Muthusamy V, Saha S, Agrawal PK, Guleria SK, Reddy SS, Thirunavukkarasu N, Gupta HS (2015) Molecular characterization of endosperm- and amino acids-modifications among quality protein maize inbreds. Plant Breed 135:47–54. https://doi.org/10.1111/pbr.12328

    Article  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers Montpellier, Enfield, pp 43–76

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi-locus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocheford TR, Wong JC, Egesel CO, Lambert RJ (2002) Enhancement of vitamin E levels in corn. J Am Coll Nutr 21:191S–198S. https://doi.org/10.1080/07315724.2002.10719265

    Article  CAS  PubMed  Google Scholar 

  • Saffrane ML, Pellaud S (2017) Current strategies for vitamin E biofortification of crops. Curr Opin Biotechnol 44:189–197. https://doi.org/10.1016/j.copbio.2017.01.007

    Article  CAS  Google Scholar 

  • Saha S, Walia S, Kundu A (2013) Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase. Anal Bioanal Chem 405:9285–9295. https://doi.org/10.1007/s00216-013-7336-9

    Article  CAS  PubMed  Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world, 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307–327

    Article  Google Scholar 

  • Shutu X, Dalong Z, Ye C, Yi Z, Shah T, Ali F, Qing L, Zhigang L, Weidong W, Jiansheng L, Xiaohong Y, Yan J (2012) Dissecting tocopherols content in maize (Zea mays L.) using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biol 12:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Ann Rev Nutr 16:321–347

    Article  CAS  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630. https://doi.org/10.1534/genetics.104.032086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JC, Lambert RJ, Tadmor Y, Rocheford TR (2003) QTL Associated with accumulation of tocopherols in maize. Crop Sci 43:2257–2266. https://doi.org/10.2135/cropsci2003.2257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge ICAR-Indian Agricultural Research Institute, New Delhi for financial support. First author is thankful to Indian Council of Agricultural Research, New Delhi and ICAR-Indian Institute of Maize Research, Ludhiana for study leave for the doctoral programme. We sincerely acknowledge maize breeders of AICRP-Maize for sharing their inbreds. The help of Mr. Manish Kapasia is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firoz Hossain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.K., Jaiswal, S.K., Muthusamy, V. et al. Molecular diversity and genetic variability of kernel tocopherols among maize inbreds possessing favourable haplotypes of γ-tocopherol methyl transferase (ZmVTE4). J. Plant Biochem. Biotechnol. 28, 253–262 (2019). https://doi.org/10.1007/s13562-018-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0470-x

Keywords

Navigation