Skip to main content
Log in

Factors affecting fructosyltransferases and fructan exohydrolase activities in Agave tequilana Weber var. azul

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

There is great interest in the fructosyltransferases (FTFs) involved in fructan metabolism and agents affecting their activity. Agaves accumulate fructans, fructose polymers linked by glycosidic β(2–1) and β(2–6) bonds in linear or branched configurations. In plants, fructans provide protection under stress conditions. The sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), fructan:fructan 6G-fructosyltransferase (6G-FFT), and fructan exohydrolase (FEH) activities were analyzed in micropropagated Agave tequilana plants in the absence and presence of HgCl2, AgNO3, MgCl2, sodium deoxycholate (DNa), and sodium dodecyl sulfate (SDS). Kestose, nystose and neokestose were synthesized by the respective FTFs. HgCl2 and AgNO3 inhibited all FTFs, mainly up to 90 % in 1-SST and 1-FFT. DNa increased 1-SST (32 %) and 1-FFT (45 %) activities, and SDS increased 6G-FFT activity by 96 %. Finally, AgNO3 inhibited FEH activity by 78 %. Our results might be relevant on the regulation of FTFs in agave and other crops, for instance by the increment the fructans synthesis in stressed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DNa:

Sodium deoxycholate

FTFs:

Fructosyltransferases

HPAEC-PAD:

High performance anionic exchange chromatography coupled to pulse amperometric detection

RN:

Raftiline

RS:

Raftilose

TLC:

Thin layer chromatography

References

  • Anderson K, Li SC, Li YT (2000) Diphenylamine-aniline-phosphoric acid reagent, a versatile spray reagent for revealing glycoconjugates on thin layer chromatography plates. Anal Biochem 287:337–339

    Article  CAS  PubMed  Google Scholar 

  • Fujishima M, Sakai H, Ueno K, Takahashi N, Onodera S, Benkeblia N, Shiomi N (2005) Purification and characterization of a fructosyltransferase from onion bulbs and its key role in the synthesis of fructo-oligosaccharides in vivo. New Phytol 165:513–524

    Article  CAS  PubMed  Google Scholar 

  • Hendry GAF (1987) The ecological significance of fructan in a contemporary flora. New Phytol 106:201–216

    Article  CAS  Google Scholar 

  • Hincha DK, Hellwege EM, Heyer AG, Crowe JH (2000) Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem 267:535–540

    Article  CAS  PubMed  Google Scholar 

  • Hlady VV, Buijs J (1996) Protein adsorption on solid surfaces. Curr Opin Biotechnol 7:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbour A, Shemesh M, Srebnik M, Zaks B, Steinberg D (2007) Effect of oxazaborolidines on immobilized fructosyltransferases analyzed by surface plasma resonance. Biosens Bioelectron 22:1658–1663

    Article  CAS  PubMed  Google Scholar 

  • Kanaya K, Chiba E, Shimomura T (1978) Thin-layer chromatography of linear oligosaccharides. Agric Biol Chem 42:1947–1948

    Article  CAS  Google Scholar 

  • Kringstad R, Kenyon WH, Black CC Jr (1980) The rapid isolation of vacuoles from leaves of crassulacean acid metabolism plants. Plant Physiol 66:379–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston DP III, Henson CA (1998) Apoplastic sugars fructans, fructan exohydrolase and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 116:403–408

    Article  CAS  PubMed Central  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López MG, Mancilla-Margalli NA, Mendoza-Díaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. azul. J Agric Food Chem 51:7835–7840

    Article  PubMed  Google Scholar 

  • Mancilla-Margalli NA, López MG (2006) Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. J Agric Food Chem 54:7832–7839

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Kostadinova S, Pérez P, Martín del Molino IM, Martínez-Carrasco R (2004) Nitrate is a negative signal for fructan synthesis, and the fructosyltransferase-inducing trehalose inhibits nitrogen and carbon assimilation in excised barley leaves. New Phytol 161:749–759

    Article  CAS  Google Scholar 

  • Nagaraj VJ, Riedl R, Boller T, Wiemken A, Meyer AD (2001) Light and sugar regulation of the barley sucrose: fructan 6-fructosyltransferase promoter. J Plant Physiol 158:1601–1607

    Article  CAS  Google Scholar 

  • Nobel PK (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205

    Article  CAS  Google Scholar 

  • Rivera-Feregrino C (2007) Efectos de las agavinas en la calidad de fresa durante el almacenamiento en refrigeración después de ser tratada térmicamente. B.S. Thesis, Cinvestav-Irapuato, Mexico

  • Sánchez-Marroquín A, Hope PH (1953) Agave juice: fermentation and chemical composition studies of some species. J Agric Food Chem 1:246–249

    Article  Google Scholar 

  • Steinberg D, Beeman D, Bowen WH (1996) Kinetic properties of glucosyltransferase adsorbed onto saliva-coated hydroxyapatite. Artif Cells Blood Substit Immobil Biotechnol 24:553–566

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D, Rozen R, Bromshteym M, Zaks B, Gedalia I, Bachrach G (2002) Regulation of fructosyltransferase activity by carbohydrates in solution and immobilized on hydroxyapatite surfaces. Carbohydr Res 337:701–710

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Oi S, Yamamoto T (1979) Synthesis of levan by levansucrase: some factors affecting the rate of synthesis and degree of polymerization of levan. J Biochem 85:287–293

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti JA, Salerno GI, Crespi MD, Pontis HG (1990) Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol Plant 78:554–559

    Article  CAS  Google Scholar 

  • Van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A (2005) Cloning, characterization and functional analysis of novel 6-1-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum L.). New Phytol 166:917–932

    Article  PubMed  Google Scholar 

  • Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, Van den Ende W (2007) Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-1-kestose as substrate vs sucrose as inhibitor. New Phytol 174:90–100

    Article  CAS  PubMed  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Le Roy K, Venken T, Lammens W, Van den Ende W, De Maeyer M (2012) pKa modulation of the acid/base catalyst within GH32 and GH68: a role in substrate/inhibitor specificity? PLoS One 7, e37453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

García-Pérez expresses her sincere thanks to national council of science and technology (CONACYT) and research center and advanced studies of the national polytechnic institute (CINVESTAV) for the scholarship (203262) that led to the realization of this work and to BROWN-FORMAN CASA HERRADURA for the A. tequilana plants.

Conflict of interest

Both authors agreed on the content of the paper and post no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes G. López.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Pérez, M.C., López, M.G. Factors affecting fructosyltransferases and fructan exohydrolase activities in Agave tequilana Weber var. azul. J. Plant Biochem. Biotechnol. 25, 147–154 (2016). https://doi.org/10.1007/s13562-015-0320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0320-z

Keywords

Navigation