Skip to main content
Log in

Impact théorique des études des patients en état végétatif et en état de conscience minimale

Theoretical impact of vegetative state and minimal conscious state patients studies

  • Mise au Point / Update
  • Published:
Médecine Intensive Réanimation

Résumé

Les études qui ont été réalisées ces trente dernières années auprès des patients en état végétatif (EV) et en état de conscience minimale (ECM) ont eu un impact clinique majeur. Elles ont permis, grâce au développement des techniques d’électrophysiologie et d’imagerie cérébrale, la mise en place d’outils paracliniques d’aide au diagnostic, ainsi que l’amélioration des méthodes d’évaluation du pronostic neurologique à long terme. Cependant, l’impact de ces études ne se restreint pas au domaine de la clinique. Il nous semble pouvoir être étendu au champ plus large de la recherche biomédicale sur la conscience. En effet, les données recueillies chez les patients EV et ECM ont permis la description de différents états cérébraux en fonction du niveau de conscience. L’objectif de ce travail est de présenter l’impact théorique de l’étude des patients en EV et en ECM sur la description des bases neurales de la conscience. Pour cela, nous avons choisi de nous placer dans le cadre théorique de la dualité de la conscience. Dans la première partie de notre travail, nous présentons (i) les régions cérébrales qui sont impliquées dans l’émergence de la conscience (composante spatiale), et (ii) la chronologie des différents événements neuronaux qui aboutissent à l’émergence de la conscience (composante temporelle). Ensuite, dans une seconde partie, nous nous intéressons aux données de connectivité cérébrale qui semblent permettre l’intégration des composantes spatiale et temporelle dans la description des bases neurales de la conscience.

Abstract

Over the last thirty years, studies carried out with patients Vegetative State (VS) and Minimal Conscious State (MCS) have had a major clinical impact. Since the development of electrophysiology and neuroimaging techniques, they have enabled the improvement of diagnostic process and assessment of long-term neurological prognosis. However, the impact of these studies is not restricted to the clinical field. It seems to us that it can be extended to the wider field of biomedical research on consciousness. Indeed, data collected in patients VS and MCS allowed the description of different brain states according to the level of consciousness. The aim of this work is to describe the theoretical impact of the study of VS and MCS patients on the description of neural bases of consciousness. For this, we have chosen the theoretical framework of the duality of consciousness. In the first part of our work we present (i) the brain regions that are involved in the emergence of consciousness (spatial component), and (ii) the chronology of the different neuronal events that lead to the emergence of consciousness (temporal component). Then, in a second part, we are interested in the data of cerebral connectivity which seem to allow the integration of the spatial and temporal components in the description of the neural bases of the consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Stevens RD, Hannawi Y, Puybasset L, (2014) MRI for coma emergence and recovery. Curr Opin Crit Care 20: 168–173

    Article  PubMed  Google Scholar 

  2. Jennett B, Plum F, (1972) Persistent vegetative state after brain damage. A syndrome in search of name. Lancet 1: 734–737

    Article  CAS  PubMed  Google Scholar 

  3. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58: 349–353

    Article  PubMed  Google Scholar 

  4. Teasdale G, Jennett B, (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2: 81–84

    Article  CAS  PubMed  Google Scholar 

  5. Ledoux D, Piret S, Boveroux P, Bruno MA, Vanhaudendhuyse A, Damas P, Moonen G, (2008) Les échelles d’évaluation des états de conscience altérée. Réanimation 17: 695–701

    Article  Google Scholar 

  6. Giacino JT, Kalmar K, Whyte J, (2004) The JFK Coma Recovery Scale-Revised: measurment characteristics and diagnostic utility. Arch Phys Med Rehabil 85: 2020–2029

    Article  PubMed  Google Scholar 

  7. Wijdicks EFM, Bamlet WR, Maramattom BV, Manno EM, McClelland RL, (2005) Validation of a new coma scale: the FOUR score. Ann Neurol 58: 585–593

    Article  PubMed  Google Scholar 

  8. Laureys S, (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9: 556–559

    Article  PubMed  Google Scholar 

  9. Laureys S, Lemaire C, Maquet S, (1999) Cerebral metabolism during vegetative state and after recovery to consciousness. Journal of Neurology Neurosurg Psych 67: 121–122

    Article  CAS  Google Scholar 

  10. Levy DE, Sidtis JJ, Rottenberg DA, Jarden JO, Strother SC, Dhawan V, Ginos JZ, (1987) Differences in cerebral blood flow and glucose utilization in vegetative versus locked-in patients. Ann Neurol 22: 673–682

    Article  CAS  PubMed  Google Scholar 

  11. Schiff ND, Ribary U, Moreno DR, Beattie B, Kronberg E, Blasberg R, Giacino J, (2002) Residual cerebral activity and behavioral fragments can remain in the persistently vegetative brain. Brain 2002: 1210–1234

    Article  Google Scholar 

  12. Stender J, Kupers R, Rodell A, Thibaut A, Chatelle C, Bruno MA, Gejl M, Bernard C, Hustinx R, Laureys S, Gjedde A, (2015) Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab 35: 58–65

    Article  CAS  PubMed  Google Scholar 

  13. Laureys S, Perrin F, Faymonville M, Schnakers C, Boly M, Bartsch V, (2004) Cerebral processing in the minimally conscious state. Neurol Dis 63: 916–918

    Article  CAS  Google Scholar 

  14. Baars BJ, (1988) A cognitive theory of consciousness. NY: Cambridge University Press p 270–273

    Google Scholar 

  15. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME, (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102: 9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corbetta M, Shulman GL, (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215

    Article  CAS  PubMed  Google Scholar 

  17. Raichle ME, Snyder AZ, (2007) A defaut mode of brain function: a briel history of an evolving idea. Neuroimage 37: 1083–1090

    Article  PubMed  Google Scholar 

  18. Laureys S, Faymonville ME, Peigneux P, Damas P, Lambermont B, Del Fiore G, Degueldre C, Aerts J, Luxen A, Franck G, Lamy M, Moonen G, Maquet P, (2002) Cortical Processing of Noxious Somatosensory Stimuli in the Persistent Vegetative State. Neuroimage 17: 732–741

    Article  CAS  PubMed  Google Scholar 

  19. Boly M, Faymonville ME, Peigneux P, Lambermont B, P. D, Del Fiore G, Degueldre C, Franck G, (2004) Auditory processing in severly brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61: 233–238

    Article  PubMed  Google Scholar 

  20. Schiff ND, Rodriguez-Moreno MS, Kim KHS, Giacino JT, Plum F, Hirsch J, (2005) fMRI reveals large-scale network activation in minimally conscious patients. Neurology 64: 514–523

    Article  CAS  PubMed  Google Scholar 

  21. Lehembre R, Gosseries O, Lugo Z, Jedidi Z, Chatelle C, Sadzot B, Laureys S, Noirhomme Q, (2012) Electrophysiological investigations of brain function in coma, vegetative and minimally conscious patients. Arch Ital Biol 150: 122–139

    CAS  PubMed  Google Scholar 

  22. Bekinschtein TA, Manes FF, Villarreal M, Owen AM, Della- Maggiore V, (2011) Functional imaging reveals movement preparatory activity in the vegetative state. Front Hum Neurosci 5: 5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD, (2006) Detecting awareness in the vegetative state. Science Sports 313: 1402

    CAS  Google Scholar 

  24. Rodriguez Moreno D, Schiff ND, Giacino J, Kalmar K, Hirsch J, (2010) A network approach to assessing cognition in disorders of consciousness. Neurol Dis 75: 1871–1878

    Article  CAS  Google Scholar 

  25. Gosseries O, Bruno MA, Chatelle C, Vanhaudenhuyse A, Schnakers C, Soddu A, Laureys S, (2011) Disorders of consciousness: what’s in a name? NeuroRehabilitation 28: 3–14

  26. Lehembre R, Bruno MA, Vanhaudenhuyse A, Chatelle C, Cologan V, Leclercq Y, Soddu A, (2012) Resting state EEG study of comatose patients: a connectivity and frequency analysis to find differences between Vegetative and Minimally Conscious States. Funct Neurol 27: 41–47

    PubMed  PubMed Central  Google Scholar 

  27. Schnakers C, Ledoux D, Majerus S, Damas P, Lambermont B, Lamy M, Bolly M, (2008) Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders. Brain Injury 22: 926–931

    Article  CAS  PubMed  Google Scholar 

  28. Vanhaudenhuyse A, Laureys S, Perrin F, (2008) Cognitive eventrelated potentials in comatose and post-comatose states. Neurocrit Care 8: 262–270

    Article  PubMed  Google Scholar 

  29. King J, Faugeras F, Gramfort A, Schurger A, El Karoui I, Sitt J, Rohaut B, Wacongne C, Labyt E, Bekinschtein T, (2013) Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage 83: 726–738

    Article  CAS  PubMed  Google Scholar 

  30. Rohaut B, Faugeras F, Chausson N, King JR, Karoui IE, Cohen L, Naccache L, (2015) Probing ERP correlates of verbal semantic processing in patients with impaired consciousness. Neuropsychologia 66: 279–292

    Article  PubMed  Google Scholar 

  31. Sergent C, Faugeras F, Rohaut B, Perrin F, Valente M, Tallon- Baudry C, Cohen L, Naccache L, (2017) Multidimensional cognitive evaluation of patients with disorders of consciousness using EEG: A proof of concept study. Neuroimage Clin 13: 455–469

    Article  PubMed  Google Scholar 

  32. Faugeras F, Rohaut B, Weiss N, Bekinschtein T, Galanaud D, Puybasset L, Bolgert F, Sergent C, Cohen L, Dehaene S, (2012) Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness. Neuropsychologia 50: 403–418

    Article  PubMed  Google Scholar 

  33. Faugeras F, Rohaut B, Weiss N, Bekinschtein TA, Galanaud D, Puybasset L, Bolgert F, Sergent C, Cohen L, Dehaene S, Naccache L, (2011) Probing consciousness with event-related potentials in the vegetative state. Neurology 77: 264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Polich J, (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  35. Friston KJ, (2011) Functional and effective connectivity: a review. Brain Connect 1: 13–36

    Article  PubMed  Google Scholar 

  36. Massimini M, Boly M, Casali A, Rosanova M, Tononi G, (2009) A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res 177: 201–214

    Article  PubMed  Google Scholar 

  37. Ragazzoni A, Pirulli C, Veniero D, Feurra M, Cincotta M, Giovannelli F, Chiaramonti R, Lino M, Rossi S, Miniussi C, (2013) Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PLoS ONE 8: e57069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cavanna AE, (2007) The precuneus and consciousness. CNS Spectr 12: 545–552

    Article  PubMed  Google Scholar 

  39. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M, (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133: 161–171

    Article  PubMed  Google Scholar 

  40. Soddu A, Vanhaudenhuyse A, Bahri MA, Bruno MA, Boly M, Demertzi A, Tshibanda JF, Phillips C, Stanziano M, Ovadia- Caro S, Nir Y, Maquet P, Papa M, Malach R, Laureys S, Noirhomme Q, (2012) Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp 33: 778–796

    Article  PubMed  Google Scholar 

  41. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P, (2000) Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790

    Article  CAS  PubMed  Google Scholar 

  42. Llinas R, Ribary U, Contreras D, Pedroarena C, (1998) The neural basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanhaudenhuyse A, Demertzi A, Schabus M, Noirhomme Q, Bredart S, Boly M, (2011) Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 23: 570–578

    Article  PubMed  Google Scholar 

  44. Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S, (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30: 2393–2400

    Article  CAS  PubMed  Google Scholar 

  45. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF, (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23: 4022–4037

    Article  PubMed  PubMed Central  Google Scholar 

  47. Demertzi A, Gomez F, Crone JS, Vanhaudenhuyse A, Tshibanda L, Noirhomme Q, Thonnard M, Charland-Verville V, Kirsch M, Laureys S, Soddu A, (2014) Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 52: 35–46

    Article  PubMed  Google Scholar 

  48. Assaf Y, Pasternak O, (2008) Diffusion tensor imaging (DTI)- based white matter mapping in brain research: a review. J Mol Neurosci 34: 51–61

    Article  CAS  PubMed  Google Scholar 

  49. Tshibanda L, Vanhaudenhuyse A, Galanaud D, Boly M, Laureys S, Puybasset L, (2009) Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: promises and pitfalls. Prog Brain Res 177: 215–229

    Article  PubMed  Google Scholar 

  50. Fernandez-Espejo D, Bekinschtein T, Monti MM, Pickard JD, Junque C, Coleman MR, Owen AM, (2011) Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage 54: 103–112

    Article  PubMed  Google Scholar 

  51. van der Eerden AW, Khalilzadeh O, Perlbarg V, Dinkel J, Sanchez P, Vos PE, Luyt CE, (2014) White matter changes in comatose survivors of anoxic ischemic encephalopathy and traumatic brain injury: comparative diffusion-tensor imaging study. Radiology 270: 506–516

    Article  PubMed  Google Scholar 

  52. Fernandez-Espejo D, Soddu A, Cruse D, Palacios EM, Junque C, Vanhaudenhuyse A, Rivas E, Newcombe V, Menon DK, Pickard JD, Laureys S, Owen AM, (2012) A role for the default mode network in the bases of disorders of consciousness. Ann Neurol 72: 335–343

    Article  PubMed  Google Scholar 

  53. Annen J, Heine L, Ziegler E, Frasso G, Bahri M, Di Perri C, Stender J, Martial C, Wannez S, D’Ostilio K, Amico E, Antonopoulos G, Bernard C, Tshibanda F, Hustinx R, Laureys S, (2016) Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET. Hum Brain Mapp 37: 3707–3720

    Article  CAS  PubMed  Google Scholar 

  54. Parvizi J, Damasio AR, (2003) Neuroanatomical correlates of brainstem coma. Brain Behav 126: 1524–1536

    Google Scholar 

  55. Paus T, (2000) Functional anatomy of arousal and attention systems in the human brain. Progress in Brain Research 126: 65–77

    Article  CAS  PubMed  Google Scholar 

  56. Yeo SS, Chang PH, Jang SH, (2013) The ascending reticular activating system from pontine reticular formation to the thalamus in the human brain. Front Hum Neurosci 7: 416

    Article  PubMed  PubMed Central  Google Scholar 

  57. Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T, Greer DM, Steven M, (2013) Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 72: 505–523

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jang SH, Kim SH, Lee HD, (2016) Impaired consciousness caused by injury of the lower ascending reticular activating system: evaluation by diffusion tensor tractography. Neural Regen Res 11: 352

    Article  PubMed  PubMed Central  Google Scholar 

  59. Laouchedi M, Galanaud D, Delmaire C, Fernandez-Vidal S, Messe A, Mesmoudi S, Oulebsir Boumghar F, Pelegrini-Issac M, Puybasset L, Benali H, Perlbarg V, (2015) Deafferentation in thalamic and pontine areas in severe traumatic brain injury. J Neuroradiol 42: 202–211

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Verdonk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdonk, C., Petit, A., Bompaire, F. et al. Impact théorique des études des patients en état végétatif et en état de conscience minimale. Méd. Intensive Réa 26, 396–404 (2017). https://doi.org/10.1007/s13546-017-1301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-017-1301-4

Mots clés

Keywords

Navigation