Skip to main content
Log in

Prise en charge des infections ostéo-articulaires sévères en réanimation

Severe bone and joint infection management in intensive care unit

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Les infections ostéo-articulaires (IOA) regroupent des situations cliniques variées, se distinguant par leur site (articulation, rachis, os longs…), leur évolution (aiguë, chronique), la présence ou non de matériel étranger (prothèse articulaire, matériel d’ostéosynthèse), le(s) micro-organisme(s) impliqué(s), le terrain et la voie de contamination (hématogène, postopératoire, de contiguïté…). Ces infections sont rares en soins intensifs et concernent des patients en sepsis sévère/choc septique induits par l’IOA ou nécessitant une surveillance en période postopératoire immédiate. La gravité du tableau clinique peut être liée au terrain, aux facteurs de virulence du pathogène et à l’existence d’un abcès ou d’une bactériémie associés à l’infection ostéo-articulaire. Si le diagnostic clinique est en général aisé, le diagnostic microbiologique est souvent difficile du fait de l’urgence à instaurer un traitement antibiotique. La ponction articulaire ou d’une collection para-articulaire est alors l’examen clé pour permettre une documentation microbiologique et sera associée à la réalisation d’hémocultures. Dans ce contexte de soins intensifs, l’antibiothérapie probabiliste aura un large spectre et sera précédée si possible d’une documentation microbiologique permettant d’adapter secondairement le traitement antibiotique. La complexité des paramètres impliqués dans les choix thérapeutiques nécessite une prise en charge multidisciplinaire.

Abstract

Bone and joint infections (BJI) are characterized by various clinical presentations, according to the site of infection (joint, spine, long bones…), the evolution (acute, chronic), the presence of an implant (prosthetic joint, osteosynthesis), the causative pathogens, patient’s medical condition, and infection route (hematogenous or surgical site infection, contiguous osteomyelitis….). BJI are a rare cause of hospitalization in the intensive care unit (ICU), and patients are usually admitted for septic shock or severe sepsis management, or in post-operative period. The severity of BJI may be explained by patient’s medical condition, by virulence of the causative pathogen, or by the occurrence of abscess or bacteremia. Clinical diagnosis of severe BJI is generally easy but microbiological documentation may be compromised by the need of prompt antibiotic treatment, situation in which joint aspiration or para-articular abscess aspiration are cornerstones of microbiological analysis and must be coupled to blood cultures. In the ICU, a broad spectrum empirical antibiotic therapy must be initiated and preceded, if possible, by microbiological samples in order to target the antibiotic therapy. Parameters that guide therapeutic choices are complex, explaining why these patients must be managed by a multidisciplinary team.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Grammatico-Guillon L, Baron S, Gettner S, et al (2012) Bone and joint infections in hospitalized patients in France, 2008: clinical and economic outcomes. J Hosp Infect 82:40–8

    Article  CAS  PubMed  Google Scholar 

  2. Maaloum Y, Meybeck A, Olive D, et al (2013) Clinical spectrum and outcome of critically ill patients suffering from prosthetic joint infections. Infection 41:493–501

    Article  CAS  PubMed  Google Scholar 

  3. Senneville E, Savage C, Nallet I, et al (2006) Improved aeroanaerobe recovery from infected prosthetic joint samples taken from 72 patients and collected intraoperatively in 4. Rosenow’s broth Acta Orthop 77:120–4

    Article  PubMed  Google Scholar 

  4. Moran E, Masters S, Berendt A, et al (2007) Guiding empirical antibiotic therapy in orthopaedics: the microbiology of prosthetic joint infections managed by debridement, irrigation and prosthesis retention. J Infect 55:1–7

    Article  CAS  PubMed  Google Scholar 

  5. Lamagni T (2014) Epidemiology and burden of prosthetic joint infections. J Antimicrob Chemother 69(Suppl 1):i5–10

    Article  Google Scholar 

  6. Dubost JJ, Couderc M, Tatar Z, et al (2014) Three-decade trends in the distribution of organisms causing septic arthritis in native joints: Single-center study of 374 cases. Joint Bone Spine 81:438–40

    Article  PubMed  Google Scholar 

  7. Titécat M, Senneville E, Wallet F, et al (2013) Bacterial epidemiology of osteoarticular infections in a referent center: 10-year study. Orthop Traumatol Surg Res 99:653–8

    Article  PubMed  Google Scholar 

  8. Felten A, Desplaces N, Nizard R, et al (1998) Infections ostéoarticulaires à Peptostreptococcus magnus après chirurgie orthopédique: quatorze cas et facteurs de pathogénicité. Pathol Biol 46:442–8

    CAS  PubMed  Google Scholar 

  9. Walter G, Vernier M, Pinelli PO, et al (2014) Bone and joint infections due to anaerobic bacteria: an analysis of 61 cases and review of the literature. Eur J Clin Microbiol Infect Dis 33:1355–64

    Article  CAS  PubMed  Google Scholar 

  10. Illiaquer M, Corvec S, Touchais S, et al (2012) Anaerobes isolated from bone and joint infections and their susceptibility to antibiotics. J Infect 65:473–5

    Article  PubMed  Google Scholar 

  11. Haute Autorité de Santé (2014) Recommandations de bonnes pratiques, Prothèse de hanche ou de genou: diagnostic et prise en charge de l’infection dans le mois suivant l’implantation(http://www.hassante.fr/portail/plugins/Modul XitiKLEE/types/FileDocument/doXiti.jsp?id=c_1 32559

    Google Scholar 

  12. Société de pathologie infectieuse de langue française (SPILF), Collège des universitaires de maladies infectieuses et tropicales (CMIT), Groupe de pathologie infectieuse pédiatrique (GPIP), et al (2010) Recommendations for bone and joint prosthetic device infections in clinical practice (prosthesis, implants, osteosynthesis). Med Mal Infect 40:185–211

    Article  Google Scholar 

  13. Weissman BN, Sledge CB (1986) Orthopedic radiology. Philadelphia: WB Saunders

    Google Scholar 

  14. Tumeh SS, Aliabadi P, Weissman BN (1987) Disease activity in osteomyelitis: role of radiography Radiology 165:781–4

    CAS  Google Scholar 

  15. Rabin DN, Smith C, Kubicka RA, et al (1987) Problem prostheses: the radiologic evaluation of total joint replacement. Radiographics 7:1107–27

    Article  CAS  PubMed  Google Scholar 

  16. Tigges S, Stiles RG, Roberson JR (1994) Appearance of septic hip prostheses on plain radiographs. AJR Am J Roentgenol 163:377–80

    Article  CAS  PubMed  Google Scholar 

  17. Carbó S, Rosón N, Vizcaya S, et al (2006) Can ultrasound help to define orthopedic surgical complications? Curr Probl Diagn Radiol 35:75–89

    Article  PubMed  Google Scholar 

  18. Gibbon WW, Long G, Barron DA, O’Connor PJ (2002) Complications of orthopedic implants: sonographic evaluation. J Clin Ultrasound 30:288–99

    Article  PubMed  Google Scholar 

  19. Wing VW, Jeffrey RB, Fedemile MP, et al (1985) Chronic osteomyelitis examined by CT. Radiology 154:171–4

    Article  CAS  PubMed  Google Scholar 

  20. Seltzer SE. Value of computed tomography in planning medical and surgical treatment of chronic osteomye!itis (1984) J Comput Assist Tomogr 8:482–7

    Article  CAS  PubMed  Google Scholar 

  21. Cyteval C, Hamm V, Sarrabere MP, et al (2002) Painful infection at the site of hip prosthesis: CT imaging. Radiology 224:477–83

    Article  PubMed  Google Scholar 

  22. Duff GP, Lachiewicz PF, Kelley SS (1996) Aspiration of the knee joint before revision arthroplasty. Clin Orthop Relat Res 331:132–9

    Article  PubMed  Google Scholar 

  23. Spangehl MJ, Masri BA, O’Connell JX, Duncan CP (1999) Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am 81:672–83

    CAS  PubMed  Google Scholar 

  24. Levy PY, Fournier PE, Fenollar F, Raoult D (2013) Systematic PCR detection in culture-negative osteoarticular infections. Am J Med 126:1143.e25-33

    Article  PubMed  Google Scholar 

  25. Société de Pathologie Infectieuse de Langue Française (2007) Recommandations pour la Pratique Clinique, Spondylodiscites infectieuses primitives, et secondaires à un geste intra-discal sans mise en place de matériel. Med Mal Inf 37:573–83

    Article  Google Scholar 

  26. Osmon DR, Berbari EF, Berendt AR, et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e25

    Article  PubMed  Google Scholar 

  27. Senneville E, Nguyen S (2014) Difficult Situations Managing Diabetic Foot. Evidences and Personal Views: Is to Operate on Patients With Diabetic Foot Osteomyelitis Old-Fashioned? Int J Low Extrem Wounds 13:241–6

    Google Scholar 

  28. Lipsky BA (2014) Treating diabetic foot osteomyelitis primarily with surgery or antibiotics: have we answered the question? Diabetes Care 37:593–5

    Article  PubMed  Google Scholar 

  29. Lázaro-Martínez JL, Aragón-Sánchez J, García-Morales E (2014) Antibiotics versus conservative surgery for treating diabetic foot osteomyelitis: a randomized comparative trial. Diabetes Care 37:789–95

    Article  PubMed  Google Scholar 

  30. Société de Pathologie Infectieuse de Langue FranÇaise (2007) Recommandations pour la pratique clinique. Prise en charge du pied diabétique infecté. Med Mal Inf 37:26–50

    Article  Google Scholar 

  31. Lipsky BA, Berendt AR, Cornia PB, et al (2012) Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:e132–73

    Article  Google Scholar 

  32. Aragón-Sánchez J, Lázaro-Martínez JL, Alvaro-Afonso FJ, Molinés-Barroso R (2014) Conservative Surgery of Diabetic Forefoot Osteomyelitis: How Can I Operate on This Patient Without Amputation? Int J Low Extrem Wounds [in press]

    Google Scholar 

  33. Ha Van G, Siney H, Danan JP, et al (1996) Treatment of osteomyelitis in the diabetic foot. Contribution of conservative surgery. Diabetes Care 19:1257–60

    Google Scholar 

  34. Tone A, Nguyen S, Devemy F, et al (2014) Six-week Versus Twelve-Week Antibiotic Therapy for Nonsurgically Treated Diabetic Foot Osteomyelitis: A Multicenter Open-Label Controlled Randomized Study. Diabetes Care 38:302–7

    Article  PubMed  Google Scholar 

  35. Senneville E, Lombart A, Beltrand E, et al (2008) Outcome of diabetic foot osteomyelitis treated nonsurgically: a retrospective cohort study. Diabetes Care 31:637–42

    Article  PubMed  Google Scholar 

  36. Pittet D, Wyssa B, Herter-Clavel C, et al (1999) Outcome of diabetic foot infections treated conservatively: a retrospective cohort study with long-term follow-up. Arch Intern Med 159:851–6

    Article  CAS  PubMed  Google Scholar 

  37. Ravindran V, Logan I, Bourke BE (2009) Medical vs surgical treatment for the native joint in septic arthritis: a 6-year, single UK academic centre experience. Rheumatology (Oxford) 48:1320–2

    Article  Google Scholar 

  38. Mathews CJ, Weston VC, Jones A, et al (2010) Bacterial septic arthritis in adults. Lancet 375:846–55

    Article  PubMed  Google Scholar 

  39. Société Française d’Anesthésie et Réanimation, Groupe Transversal Sepsis (2007) Prise en charge initiale des états septiques graves de l’adulte et de l’enfant. Réanimation 16(suppl1):1–21

    Article  Google Scholar 

  40. Trampuz A, Zimmerli W (2008) Diagnosis and treatment of implant- associated septic arthritis and osteomyelitis. Curr Infect Dis Rep 10:394–403

    Article  PubMed  Google Scholar 

  41. Barberan J (2006) Management of infections of osteoarticular prosthesis. Clin Microbiol Infect 12:93–101

    Article  CAS  PubMed  Google Scholar 

  42. Bédos JP, Allaouchiche B, Armand-Lefèvre L (2014) Stratégies de réduction de l’utilisation des antibiotiques à visée curative en reanimation (adulte et pédiatrique). Réanimation 23:558–82

    Article  Google Scholar 

  43. Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–82

    Article  CAS  PubMed  Google Scholar 

  44. van Hal SJ, Paterson DL, Lodise TP (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57:734–44

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cianferoni S, Devigili A, Ocampos-Martinez E, et al (2013) Development of acute kidney injury during continuous infusion of vancomycin in septic patients. Infection 41:811–20

    Article  CAS  PubMed  Google Scholar 

  46. Hanberger H, Nilsson LE, Maller R, Isaksson B (1991) Pharmacodynamics of daptomycin and vancomycin on Enterococcus faecalis and Staphylococcus aureus demonstrated by studies of initial killing and postantibiotic effect and influence of Ca2+ and albumin on these drugs. Antimicrob Agents Chemother 35:1710–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rose WE, Rybak MJ, Kaatz GW (2007) Evaluation of daptomycin treatment of Staphylococcus aureus bacterial endocarditis: an in vitro and in vivo simulation using historical and current dosing strategies. J Antimicrob Chemother 60:334–40

    Article  CAS  PubMed  Google Scholar 

  48. Murillo O, Garrigós C, Pachón ME, et al (2009) Efficacy of high doses of daptomycin versus alternative therapies against experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:4252–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Moise PA, Hershberger E, Amodio-Groton MI, Lamp KC (2009) Safety and clinical outcomes when utilizing high-dose (>8mg/kg) daptomycin therapy. Ann Pharmacother 43:1211–9

    Article  CAS  PubMed  Google Scholar 

  50. Bassetti M, Nicco E, Ginocchio F, et al (2010) High-dose daptomycin in documented Staphylococcus aureus infections. Int J Antimicrob Agents 36:459–461

    Article  CAS  PubMed  Google Scholar 

  51. Lora-Tamayo J, Parra-Ruiz J, Rodríguez-Pardo D, et al (2014) High doses of daptomycin (10 mg/kg/d) plus rifampin for the treatment of staphylococcal prosthetic joint infection managed with implant retention: a comparative study. Diagn Microbiol Infect Dis 80:66–71

    Article  CAS  PubMed  Google Scholar 

  52. Smith JR, Claeys KC, Barber KE, Rybak MJ (2014) High-dose daptomycin therapy for staphylococcal endocarditis and when to apply it. Curr Infect Dis Rep 16:429

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S., Meybeck, A., Beltrand, E. et al. Prise en charge des infections ostéo-articulaires sévères en réanimation. Réanimation 24, 256–264 (2015). https://doi.org/10.1007/s13546-015-1057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-015-1057-3

Motsclés

Keywords

Navigation