Skip to main content
Log in

Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We establish a novel definition of the fractional gradient and divergence of order \(\alpha \in (0, 1)\) through the use of Riesz potential on homogeneous Carnot groups. We introduce and investigate the distributional fractional Sobolev space and the space of fractional BV functions in this context. Additionally, we provide a definition of fractional Caccioppoli sets on homogeneous Carnot groups and demonstrate their blow-up property, using similar methods as outlined in [13].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this study, the notation \(a\lesssim b\) means that there exists a universal constant \(C >0\) such that \(a \leqslant Cb \). And we write \(a \sim b\) if both \(a \lesssim b\) and \(b \lesssim a\) hold.

  2. In the sequel, if the identification of the base point is clear or not important, we often omit x in subscripts.

  3. Here and subsequently, \(\chi _A\) denotes the characteristic function of the set A.

  4. Since \(X_j h\) is smooth except at x and locally integrable, we can employ (5.6) through the use of a standard approximation argument.

References

  1. Agrachev, A., Barilari, D., Boscain, U.: Introduction to geodesics in sub-Riemannian geometry. In: Geometry. Analysis and Dynamics on Sub-Riemannian Manifolds, 2, pp. 1–83. European Mathematical Society, Zürich (2016)

  2. Ambrosio, L., Kleiner, B., Le Donne, D.: Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane. J. Geom. Anal. 19(3), 509–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Magnani, V.: Weak differentiability of BV functions on stratified groups. Math. Z. 245(1), 123–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  5. Azevedo, A., Rodrigues, J.F., Santos, L.: On a class of nonlocal problems with fractional gradient constraint. ArXiv preprint arXiv:2202.03017 (2022)

  6. Bate, D., Li, S.: Differentiability and Poincaré-type inequalities in metric measure spaces. Adv. Math. 333, 868–930 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baudoin, F., Bonnefont, M.: Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups. Nonlinear Anal. 131, 48–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellido, J.C., Cueto, J., Mora-Corral, C.: \(\Gamma \)-convergence of polyconvex functionals involving \(s\)-fractional gradients to their local counterparts. Calc. Var. Partial Differential Equations 60(1), 7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellido, J.C., Cueto, J., Mora-Corral, C.: Nonlocal gradients in bounded domains motivated by Continuum Mechanics: Fundamental Theorem of Calculus and embeddings. ArXiv preprint arXiv:2201.08793 (2022)

  10. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Bruè, E., Calzi, M., Comi, G.E., Stefani, G.: A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II. C. R. Math. Acad. Sci. Paris 360, 589–626 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Ciatti, P., Cowling, M.G., Ricci, F.: Hardy and uncertainty inequalities on stratified Lie groups. Adv Math. 277, 365–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Comi, G.E., Stefani, G.: A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up. J. Funct. Anal. 277(10), 3373–3435 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Comi, G.E., Stefani, G.: Leibniz rules and Gauss-Green formulas in distributional fractional spaces. J. Math. Anal. Appl. 514(2), Paper No. 126312 (2022)

  15. Comi, G.E., Stefani, G.: A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I. Rev. Mat. Complut. 36(2), 491–569 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Comi, G.E., Stefani, G.: Failure of the local chain rule for the fractional variation. Port. Math. 80(1–2), 1–25 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  17. Comi, G.E., Spector, D., Stefani, G.: The fractional variation and the precise representative of \(BV^{\alpha, p}\) functions. Fract. Calc. Appl. Anal. 25(2), 520–558 (2022). https://doi.org/10.1007/s13540-022-00036-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Don, S., Vittone, D.: Fine properties of functions with bounded variation in Carnot-Carathéodory spaces. J. Math. Anal. Appl. 479(1), 482–530 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. ter Elst, A.F.M., Robinson, D.W., Sikora, A.: Heat kernels and Riesz transforms on nilpotent Lie groups. Coll. Math. 74(2), 191–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  22. Ferrari, F., Bruno, F.: Harnack inequality for fractional sub-Laplacians in Carnot groups. Math. Z. 279(1–2), 435–458 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ferrari, F., Miranda, M., Pallara, D., Pinamonti, A., Sire, Y.: Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discret. Contin. Dyn. Syst. 11(3), 477–491 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Fischer, V., Ruzhansky, M.: Quantization on Nilpotent Lie Groups. Birkhäuser, Cham (2016)

    Book  MATH  Google Scholar 

  25. Fischer, V., Ruzhansky, M.: Sobolev spaces on graded Lie groups. Ann. Inst. Fourier. 67(4), 1671–1723 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  28. Franchi, B., Serapioni, R., Serra Cassano, F.: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22(4), 859–890 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Franchi, B., Serapioni, R., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321(3), 479–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Garofalo, N., Nhieu, D.-M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grafakos, L.: Classical Fourier Analysis. Springer, New York (2014)

    Book  MATH  Google Scholar 

  33. de Guzmán, M.: Real Variable Methods in Fourier Analysis. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  34. Hebisch, W., Sikora, A.: A smooth subadditive homogeneous norm on a homogeneous group. Studia Math. 96(3), 231–236 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krantz, S.G., Peloso, M.M., Spector, D.: Some remarks on \(L^1\) embeddings in the subelliptic setting. Nonlinear Anal. 202, Paper No. 112149 (2021)

  36. Kreisbecka, C., Schönbergerb,H.: Quasiconvexity in the fractional calculus of variations: Characterization of lower semicontinuity and relaxation. Nonlinear Anal. 215, Paper No. 112625 (2022)

  37. Le Donne, E., Moisala, T.: Semigenerated Carnot algebras and applications to sub-Riemannian perimeter. Math. Z. 299(3–4), 2257–2285 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Maalaoui, A., Pinamonti, A.: Interpolations and fractional Sobolev spaces in Carnot groups. Nonlinear Anal. 179, 91–104 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Maalaoui, A., Pinamonti, A., Speight, G.: Function spaces via fractional Poisson kernel on Carnot groups and applications. Journal d’Analyse Mathémat. 1–43 (2023). https://doi.org/10.1007/s11854-022-0255-y

  40. Marchi, M.: Regularity of sets with constant intrinsic normal in a class of Carnot groups. Ann. Inst. Fourier. 64(2), 429–455 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ruzhansky, M., Durvudkhan, S.: Hardy Inequalities on Homogeneous Groups. 100 Years of Hardy Inequalities. Birkhäuser, Cham (2019)

  42. Saka, K.: Besov spaces and Sobolev spaces on a nilpotent Lie group. Tohoku Math. J. 31(4), 383–437 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Serra Cassano, F.: Some topics of geometric measure theory in Carnot groups. In: Dynamics. Geometry and Analysis on Sub-Riemannian Manifolds, 1, pp. 1–121. European Mathematical Society, Zürich (2016)

  44. Shieh, T.-T., Spector, D.E.: On a new class of fractional partial differential equations. Adv. Calc. Var. 8(4), 321–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shieh, T.-T., Spector, D.E.: On a new class of fractional partial differential equations II. Adv. Calc. Var. 11(3), 289–307 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. \(\check{\rm S}\)ilhavý, M.: Fractional vector analysis based on invariance requirements (critique of coordinate approaches). Contin. Mech. Thermodyn. 32(1), 207–228 (2020)

  47. Spector, D.: A noninequality for the fractional gradient. Port. Math. 76(2), 153–168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Varopoulos, NTh., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  49. Vittone, D.: Lipschitz surfaces, perimeter and trace theorems for BV functions in Carnot-Carathéodory spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(4), 939–998 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Hong-Quan Li of Fudan University for his helpful comments. T.Z. would like thank Zhen-Hang Bao for his patient help. T.Z. is partially supported by NSF of China (Grants No. 12271102). J.-X.Z. is partially supported by the National Key R &D Program of China (No. 2022YFA1006000, 2020YFA0712900) and NNSFC (11921001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Xiang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhu, JX. Fractional differential operators, fractional Sobolev spaces and fractional variation on homogeneous Carnot groups. Fract Calc Appl Anal 26, 1786–1841 (2023). https://doi.org/10.1007/s13540-023-00173-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00173-0

Keywords

Mathematics Subject Classification

Navigation