Skip to main content
Log in

An Insight Into the Dynamics of Carreau-Yasuda Nanofluid Through a Wavy Channel with Electroosmotic Effects: Relevance to Physiological Ducts

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Many physiological ducts, like sperm vessels, intestines, common bile ducts, ducts of salivary glands, and ducts in the repertory system, are common ducts in which transport occurs due to the propagation of complex waves on the boundary. Electroosmotic flow phenomena are significant in membrane separation processes, protein and peptide delivery, iontophoresis in drug delivery through physiological ducts, and a lot of application in plant physiology regarding pressure control in xylem and phloem vessels. The aim of this theoretical study is to analyze the thermal characteristics of physiological fluid characterized by the Carreau-Yasuda model in a complex wavy channel. The two agents of flow, i.e., the propagation of complex waves on the walls of the channel and the electric field in the axial direction, are considered. Different zeta potentials at both walls of the asymmetric channel are employed. Basic conservation laws, along with the Poisson-Boltzmann equation, are utilized to model the problem in the Cartesian coordinate system. Theoretical and biological assumptions like greater wavelength, lubrication transport, and Debye-Hückel linearization transform the governing equations of PDE into a coupled system of ODE. The shooting method is used, which is Solve, a built-in function in the computational software Mathematica to compute the stream function, temperature profile, concentration profile, and various flow and heat transfer characteristics. The impact of various penetrating parameters is described through plots. The magnitude of the velocity profile is increased near the center of geometry by increasing the electroosmotic parameter in the lower half of the regime. Then the Sherwood number and the Bejan number show enhanced behavior by increasing the electroosmotic parameter. The current analysis predicts dynamic applications in thermodynamical systems, cooling systems, biochemistry, and drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\({e}_{i},i=\mathrm{1,2},\mathrm{3,4}\) :

Amplitude of the peristaltic wave

T′ :

Averaging temperature of electrolyte

\(\overline{X}\) :

Axial coordinate in wave frame

x :

Axial coordinate in dimensionless form

\({\overline{E}}_{\overline{X}}\) :

Axial electric field

\(\overline{U}\) :

Axial velocity component in wave frame

\(u\) :

Axial velocity component in dimensionless form

\({K}_{B}\) :

Boltzmann constant

\(Br\) :

Brinkman number

\({D}_{B}\) :

Brownian diffusion coefficient

\(Nb\) :

Brownian motion parameter

\({C}_{0},{C}_{1}\) :

Concentration at walls

\(z\) :

Charge balance

\({\rho }_{e}\) :

Density of net ionic energy

\({\lambda }_{d}\) :

Debye-length of electric double layer

\({\in }_{1}\) :

Dielectric constant

\(\varphi\) :

Dimensionless potential distribution

\(\overline{t}\) :

Time

\(\alpha\) :

Dimensionless fluid parameter

\(Nt\) :

Dimensionless thermophoresis parameter

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\({D}_{c}\) :

Diffusivity of chemical species

\(Ec\) :

Eckert number

\(e\) :

Electronic charge

\({\sigma }_{e}\) :

Electric conductivity

\(k\) :

Electro-osmotic parameter

\({E}_{S}\) :

Entropy generation number

\({S}_{i j}, i,j=\mathrm{1,2},3\) :

Extra stress tensor

\({\rho }_{f}\) :

Fluid density

\(Be\) :

Bejan number

\({a}_{1},{a}_{2}\) :

Half widths of the channel

\(S\) :

Joule heating parameter

\({U}_{hs}\) :

Helmholtz-Smoluchowski velocity

\({T}_{m}\) :

Mean temperature of fluid

\(\overline{C}\) :

Nanoparticle concentration

\(Nu\) :

Nusselt’s number

\(Pe\) :

Peclet number

\(\Phi\) :

Phase difference

\(n\) :

Power law index

\(\overline{P}\) :

Pressure in wave frame

\(\overline{V}\) :

Radial (transverse) velocity component in wave frame

\(v\) :

Radial (transverse) velocity component in dimensionless form

\(Re\) :

Reynolds number

\({C}_{f}\) :

Specific heat capacity of fluid

\({C}_{p}\) :

Specific heat capacity of nanoparticles

\(Sh\) :

Sherwood number

\(\psi\) :

Steam function

\(\overline{T}\) :

Temperature

\({T}_{0},{T}_{1}\) :

Temperature at walls

\({D}_{T}\) :

Thermophoresis diffusion coefficient

\({K}_{f}\) :

Thermal conductivity

\(F\) :

Flow rate in wave frame

\(y\) :

Transverse coordinate in dimensionless form

\(\overline{Y}\) :

Transverse coordinate in wave frame

\(\delta\) :

Wave number

\({H}_{1},{H}_{2}\) :

Lower and upper walls

\({h}_{1},{h}_{2}\) :

Lower and upper walls in dimensionless form

\(We\) :

Weissenberg number

\({\xi }_{1},{\xi }_{2}\) :

Zeta potentials at walls

\({R}_{\xi }\) :

Zeta potential ratio parameter

References

  1. H. Yasmin, N. Iqbal, Convective mass/heat analysis of an electroosmotic peristaltic flow of ionic liquid in a symmetric porous microchannel with soret and dufour. Math. Probl. Eng. 2021, 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  2. N. Iqbal, H. Yasmin, A. Bibi, A.A. Attiya, Peristaltic motion of Maxwell fluid subject to convective heat and mass conditions. Ain Shams Engineering Journal 12(3), 3121–3131 (2021)

    Article  Google Scholar 

  3. Z. Nisar, H. Yasmin, Analysis of motile gyrotactic micro-organisms for the bioconvection peristaltic flow of Carreau-Yasuda bionanomaterials. Coatings 13(2), 314 (2023)

    Article  Google Scholar 

  4. H. Yasmin, Z. Nisar, Mathematical analysis of mixed convective peristaltic flow for chemically reactive Casson nanofluid. Mathematics 11(12), 2673 (2023)

    Article  Google Scholar 

  5. C.-H. Lin, L.-M. Fu, Y.-S. Chien, Microfluidic T-form mixer utilizing switching electroosmotic flow. Anal. Chem. 76, 5265 (2004)

    Article  Google Scholar 

  6. B.J. Kim, S.Y. Yoon, K.H. Lee, H.J. Sung, Development of a microfluidic device for simultaneous mixing and pumping. Exp. Fluids 46, 85 (2009)

    Article  Google Scholar 

  7. H. Jiang, X. Weng, C.H. Chon, X. Wu, D. Li, A microfluidic chip for blood plasma separation using electro-osmotic flow control. J. Micromech. Microeng. 21(8), 085019 (2011)

    Article  ADS  Google Scholar 

  8. B. Yao, G.-A. Luo, X. Feng, W. Wang, L.-X. Chen, Y.-M. Wang, A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4, 603 (2004)

    Article  Google Scholar 

  9. J.C. Misra, S. Chandra, G.C. Shit, P.K. Kundu, Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of sperm flow in microfluidic devices. Appl. Math. Mech.-Engl. Ed. 35, 749–766 (2014)

    Article  Google Scholar 

  10. S. Chakraborty, Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D Appl. Phys. 39, 5356 (2006)

    Article  ADS  Google Scholar 

  11. D. Tripathi, A. Borode, R. Jhorar, O.A. Bég, A.K. Tiwari, Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic sperm flow. Microvasc. Res. 114, 65 (2017)

    Article  Google Scholar 

  12. D. Tripathi, R. Jhorar, O. Anwar Bég, A. Kadir, Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J. Mol. Liq. 236, 358 (2017)

    Article  Google Scholar 

  13. J. Moghadam, Electrokinetic-driven flow and heat transfer of a non-newtonian fluid in a circular microchannel. J. Heat Transfer 135, 021705 (2013)

    Article  Google Scholar 

  14. K. Javid, M. Riaz, Y.M. Chu, M. Ijaz Khan, S. Ullah Khan, S. Kadry, Peristaltic activity for electro-kinetic complex driven cilia transportation through a non-uniform channel. Comput. Methods Programs Biomed. 200, 926 (2021)

    Article  Google Scholar 

  15. A. Abbasi, A. Zaman, W. Farooq, M.F. Nadeem, Electro-osmosis modulated peristaltic flow of oldroyd 4-constant fluid in a non-uniform channel. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 96, 825 (2022)

    Google Scholar 

  16. V.K. Narla, D. Tripathi, O.A. Bég, Electro-osmotic nanofluid flow in a curved microchannel. Chin. J. Phys. 67, 544 (2020)

    Article  MathSciNet  Google Scholar 

  17. A. Zeeshan, A. Riaz, F. Alzahrani, Electroosmosis-modulated bio-flow of nanofluid through a rectangular peristaltic pump induced by complex traveling wave with zeta potential and heat source. Electrophoresis. 42, 2143 (2021)

    Article  Google Scholar 

  18. Z. Asghar, M.W. Saeed Khan, M.A. Gondal, A. Ghaffari, Channel flow of non-Newtonian fluid due to peristalsis under external electric and magnetic field. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 236, 2670 (2022)

    Article  Google Scholar 

  19. A. Magesh, M. Kothandapani, V. Pushparaj, Electro-osmatic flow of Jeffrey fluid in an asymmetric micro-channel under the effect of magnetic field. J. Phys. Conf. Ser. 1850, 012102 (2021)

    Article  Google Scholar 

  20. O. Eytan, A.J. Jaffa, D. Elad, Peristaltic flow in a tapered channel: application to embryo transport within the uterine cavity. Med. Eng. Phys. 23, 473 (2001)

    Article  Google Scholar 

  21. V.K. Narla, D. Tripathi, O. Anwar Bég, Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics: mathematical modeling. J. Biomech. Eng. 141, 021003 (2019)

    Article  Google Scholar 

  22. J. Buongiorno, Convective transport in nanofluids. J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  23. J. Prakash, A. Sharma, D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843 (2018)

    Article  Google Scholar 

  24. D. Tripathi, A. Sharma, O. Anwar Bég, Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv. Powder Technol. 29, 639 (2018)

    Article  Google Scholar 

  25. W. Farooq, A. Abbasi, K. Al-Khaled, S. U. Khan, Electro-osmosis optimized peristaltic flow of hybrid nanofluid in complex wavy channel with different zeta potentials and variable thermal properties. Wav. Random. Complex. Media. 1–23 (2022). https://doi.org/10.1080/17455030.2022.2108158

  26. S. Das, B. Barman, Ramification of Hall and ion-slip currents on electro-osmosis of ionic hybrid nanofluid in a peristaltic microchannel. Bionanosci. 12, 957 (2022)

    Article  Google Scholar 

  27. J. Prakash, K. Ramesh, D. Tripathi, R. Kumar, Numerical simulation of heat transfer in sperm flow altered by electroosmosis through tapered micro-vessels. Microvasc. Res. 118, 162 (2018)

    Article  Google Scholar 

  28. K. Ramesh, J. Prakash, Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J. Therm. Anal. Calorim. 138, 1311 (2019)

    Article  Google Scholar 

  29. A. Abbasi, F. Mabood, W. Farooq, S.U. Khan, Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel. Int. Commun. Heat Mass Transf. 123, 5183 (2021)

    Article  Google Scholar 

  30. J. Prakash, M.G. Reddy, D. Tripathi, A.K. Tiwari, A model for electro-osmotic flow of pseudoplastic nanofluids in presence of peristaltic pumping: an application to smart pumping in energy systems, in Nanotechnology for Energy and Environmental Engineering. (Springer International Publishing, Cham, 2020), pp.185–213

    Chapter  Google Scholar 

  31. J. Akram, N. S. Akbar, D. Tripathi, Numerical study of the electroosmotic flow of Al2O3–CH3OH Sisko nanofluid through a tapered microchannel in a porous environment. Appl. Nanosci. 10, 4161–4176 (2020)

  32. J. Akram, N.S. Akbar, M. Alansari, D. Tripathi, Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. Int. Commun. Heat Mass Transf. 136, 106208 (2022)

    Article  Google Scholar 

  33. A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer 101, 718 (1979)

    Article  Google Scholar 

  34. N.K. Ranjit, G.C. Shit, Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy (Oxf.) 128, 649 (2017)

    Google Scholar 

  35. T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int. J. Heat Mass Transf. 106, 244 (2017)

    Article  Google Scholar 

  36. S. Noreen, Q.U. Ain, Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J. Therm. Anal. Calorim. 137, 1991 (2019)

    Article  Google Scholar 

  37. F.M. Abbasi, I. Shanakhat, S.A. Shehzad, Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J. Magn. Magn. Mater. 474, 434 (2019)

    Article  ADS  Google Scholar 

  38. S. Nawaz, T. Hayat, A. Alsaedi, Numerical study for peristalsis of Siskonanomaterials with entropy generation. J. Therm. Anal. Calorim. 139, 2129 (2020)

    Article  Google Scholar 

  39. N.K. Ranjit, G.C. Shit, D. Tripathi, Entropy generation and Joule heating of two layered electroosmotic flow in the peristaltically induced micro-channel. Int. J. Mech. Sci. 153–154, 430 (2019)

    Article  Google Scholar 

  40. M.M. Bhatti, A. Riaz, L. Zhang, S.M. Sait, R. Ellahi, Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis. J. Therm. Anal. Calorim. 144, 2187 (2021)

    Article  Google Scholar 

  41. F. Mabood, W. Farooq, A. Abbasi, Entropy generation analysis in the electro-osmosis-modulated peristaltic flow of Eyring-Powell fluid. J. Therm. Anal. Calorim. 147, 3815 (2022)

    Article  Google Scholar 

  42. A. Abbasi, W. Farooq, S. U. Khan, H. Amer, M. I. Khan, Electroosmosis optimized thermal model for peristaltic flow of with Sutterby nanoparticles in asymmetric trapped channel. Eur. Phys. J. Plus 136(12), 1207 (2021)

  43. J. Akram, N.S. Akbar, D. Tripathi, Entropy generation in electroosmotically aided peristaltic pumping of MoS2 Rabinowitsch nanofluid. Fluid Dyn. Res. 54, 015507 (2022)

    Article  ADS  Google Scholar 

  44. T. Sujith, S.K. Mehta, S. Pati, Effect of finite size of ions on entropy generation characteristics for electroosmotic flow through microchannel considering interfacial slip. J. Therm. Anal. Calorim. 148, 489 (2023)

    Article  Google Scholar 

  45. Y. Akbar, H. Alotaibi, Electroosmosis-optimized thermal model for peristaltic transportation of thermally radiative magnetized liquid with nonlinear convection. Entropy (Basel) 24, 530 (2022)

    ADS  MathSciNet  Google Scholar 

  46. M. Gul, F.M. Abbasi, S.A. Shehzad, A. Shafee, Entropy generation for peristaltic motion of Carreau’s fluid with mixture of ethylene glycol and boron-nitride nanoparticles. Phys. Scr. 95, 035212 (2020)

    Article  ADS  Google Scholar 

  47. K. Guedri, M. M. Lashin, A. Abbasi, S. U. Khan, W. Farooq, M. I. Khan, A. M. Galal, Biomedical and engineering aspects of nonlinear radiative peristaltic transport in chemically reactive sperm flow of Ellis nanofluid in an asymmetric channel with activation energy. Chin. J. Phys. (2022)

  48. T. Hayat, B. Ahmed, F.M. Abbasi, A. Alsaedi, Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J. Therm. Anal. Calorim. 137, 1359–1367 (2019)

    Article  Google Scholar 

  49. T. Hayat, R. Iqbal, A. Tanveer, A. Alsaedi, Mixed convective peristaltic transport of Carreau-Yasuda nanofluid in a tapered asymmetric channel. J. Mol. Liq. 223, 1100 (2016)

    Article  Google Scholar 

  50. S. Ayub, H. Zahir, A. Tanveer, Mixed convection and non-linear thermal radiative analysis for Carreau-Yasuda nanofluid in an endoscope. Int. Commun. Heat Mass Transf. 138, 106371 (2022)

    Article  Google Scholar 

  51. S.M. Kayani, S. Hina, M. Mustafa, A new model and analysis for peristalsis of Carreau-Yasuda (CY) nanofluid subject to wall properties. Arab. J. Sci. Eng. 45, 5179 (2020)

    Article  Google Scholar 

  52. G. Sucharitha, P. Lakshminarayana, N. Sandeep, Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int. J. Mech. Sci. 131–132, 52 (2017)

    Article  Google Scholar 

  53. F.M. Abbasi, T. Hayat, B. Ahmad, Numerical analysis for peristalsis of Carreau-Yasuda nanofluid in an asymmetric channel with slip and Joule heating effects. J. Eng. Thermophys. 25, 548 (2016)

    Article  Google Scholar 

  54. S. Noreen, A. Alsaedi, T. Hayat, Peristaltic flow of pseudoplastic fluid in an asymmetric channel. J. Appl. Mech. 79, 054501 (2012)

    Article  ADS  Google Scholar 

  55. K. Javid, N. Ali, Z. Asghar, Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects. Phys. Scr. 94, 115226 (2019)

    Article  ADS  Google Scholar 

  56. K. Javid, M. Ellahi, K. Al-Khaled, M. Raza, S.U. Khan, M.I. Khan, E.R. El-Zahar, S. Gouadria, M. Afzaal, M.I. Khan, EMHD creeping rheology of nanofluid through a micro-channel via ciliated propulsion under porosity and thermal effects. Case Stud. Therm. Eng. 30, 101746 (2022)

    Article  Google Scholar 

  57. K. Javid, M. Hassan, D. Tripathi, S. Khan, E. Bobescu, M.M. Bhatti, Double-diffusion convective biomimetic flow of nanofluid in a complex divergent porous wavy medium under magnetic effects. J. Biol. Phys. 47, 477 (2021)

    Article  Google Scholar 

  58. S.J. Dèdèwanou, A.L. Hinvi, H.C. Miwadinou, A.V. Monwanou, J.B.C. Orou, Chaotic convection in a horizontal cavity filled with (alumina–copper)/water hybrid nanofluid heated from below in presence of magnetic field. Braz. J. Phys. 51, 1079 (2021)

    Article  ADS  Google Scholar 

  59. M.N. Aslam, A. Riaz, N. Shaukat, S. Ali, S. Akram, M.M. Bhatti, Analysis of incompressible viscous fluid flow in convergent and divergent channels with a hybrid metaheuristic optimization techniques in ANN: an intelligent approach. J. Cent. S. Univ. 30, 4149 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Abbasi and W. Farooq provided the concept and edited the draft of the manuscript. Sami Ullah Khan and Adnan conducted the literature review and wrote the first draft of the manuscript. Arshad Riaz and M. M. Bhatti edited the final draft of the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to M. M. Bhatti.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Farooq, W., Khan, S.U. et al. An Insight Into the Dynamics of Carreau-Yasuda Nanofluid Through a Wavy Channel with Electroosmotic Effects: Relevance to Physiological Ducts. Braz J Phys 54, 66 (2024). https://doi.org/10.1007/s13538-024-01438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01438-6

Keywords

Navigation