Skip to main content
Log in

Defect-Mediated Self-Powered Ultraviolet Photodetection of Chemically Tailored Tin-Oxide Nanoparticles

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We have reported about the synthesis of tin oxide (SnO2) nanoparticles using simple and low-cost hydrothermal method followed by fabrication of self-powered ultraviolet (UV) photodetectors (PDs). The structural and morphological characteristics of the nanoparticles have been analyzed with X-ray diffraction and electron microscopy techniques. In addition, the existence of native defects in SnO2 has been realized from spectroscopic techniques. Further, it has been found that the nanoparticles can exhibit significant open-circuit voltage, and the observation of enhanced open-circuit voltage under illumination of UV light makes the system promising for self-powered (SP) photodetectors. The origin of the self-powered UV photodetection has been assigned to capturing of photogenerated carriers by the native defects of SnO2 nanoparticles. The observation of self-power UV detection in such system can lead to the fabrication of futuristic UV detectors without bothering the existing issue of energy crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available upon reasonable request from the authors.

Code Availability

Not Applicable.

References

  1. S.K. Mishra, S. Bayan, R. Shankar, P. Chakraborty, R.K. Srivastava, Sensors Actuators. A Phys. 211, 8 (2014)

    Google Scholar 

  2. T. He, X. Zhang, X. Ding, C. Sun, Y. Zhao, Q. Yu, J. Ning, R. Wang, G. Yu, S. Lu, K. Zhang, X. Zhang, B. Zhang, Adv. Opt. Mater. 7, 1 (2019)

    Google Scholar 

  3. P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, J. Mater. Chem. C 5, 10562 (2017)

    Article  Google Scholar 

  4. T. Zhang, Z. Xu, J. Chen, M. Li, Y. Lu, Y. He, J. Alloys Compd. 833, 155032 (2020)

    Article  Google Scholar 

  5. S. Bayan, D. Mohanta, Philos. Mag. 92, 3909 (2012)

    Article  ADS  Google Scholar 

  6. S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, Superlattices Microstruct. 76, 253 (2014)

    Article  ADS  Google Scholar 

  7. A.F. Abdulrahman, N.M. Abd-Alghafour, M.A. Almessiere, Opt. Mater. (Amst). 141, 113869 (2023)

    Article  Google Scholar 

  8. N. Wang, Z. Gu, Z. Guo, D. Jiang, M. Zhao, J. Lumin. 262, 119939 (2023)

    Article  Google Scholar 

  9. K.M. Chahrour, F.K. Yam, R. Abdalrheem, Mater. Lett. 248, 161 (2019)

    Article  Google Scholar 

  10. G. Wang, Z. Bai, H. Wu, X. Zhang, J. Li, M. Jin, J. Zhou, E. Xie, and X. Pan, Appl. Phys. Lett. 121, (2022)

  11. J.M. Wu, C.H. Kuo, Thin Solid Films 517, 3870 (2009)

    Article  ADS  Google Scholar 

  12. G. Marimuthu, K. Saravanakumar, K. Jeyadheepan, P.M. Razad, M. Jithin, V.R. Sreelakshmi, K. Mahalakshmi, Superlattices Microstruct. 128, 181 (2019)

    Article  ADS  Google Scholar 

  13. Z. Huang, J. Zhu, Y. Hu, Y. Zhu, G. Zhu, L. Hu, Y. Zi, W. Huang, Nanomaterials 12, (2022)

  14. G. Marimuthu, K. Saravanakumar, K. Jeyadheepan, K. Mahalakshmi, J. Environ. Chem. Eng. 10, 106981 (2022)

    Article  Google Scholar 

  15. B. Alhalaili, R.J. Bunk, H. Mao, H. Cansizoglu, R. Vidu, J. Woodall, M.S. Islam, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  16. L. Qu, J. Ji, X. Liu, Z. Shao, M. Cui, Y. Zhang, Nanotechnology 34, 225203 (2023)

    Article  ADS  Google Scholar 

  17. B. Deka Boruah, Nanoscale Adv. 1, 2059 (2019)

  18. Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  19. M. Hoang Tran, J.S. Bae, and J. Hur, Appl. Surf. Sci. 604, 154528 (2022)

  20. Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen, Y. Zhang, Curr. Appl. Phys. 13, 165 (2013)

    Article  ADS  Google Scholar 

  21. M.R. Pallavolu, R. Maddaka, S.K. Viswanath, A.N. Banerjee, M.D. Kim, S.W. Joo, Opt. Laser Technol. 157, 108776 (2023)

    Article  Google Scholar 

  22. G. Li, K. Zhang, Y. Wu, Q. Wang, Z. Pan, X. Fu, L. Wang, S. Feng, W. Lu, J. Alloys Compd. 934, 168070 (2023)

    Article  Google Scholar 

  23. V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 6, 2 (2012)

    Article  Google Scholar 

  24. X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater. 18, 2325 (2006)

    Article  Google Scholar 

  25. S. Bayan, D. Mohanta, J. Appl. Phys. 110, (2011)

  26. B. Teldja, B. Noureddine, B. Azzeddine, T. Meriem, Optik (Stuttg). 209, 164586.1 (2020)

  27. S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, (2006)

  28. J.K. Yang, H.L. Zhao, J. Li, L.P. Zhao, J.J. Chen, B. Yu, Acta Mater. 62, 156 (2014)

    Article  ADS  Google Scholar 

  29. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 666, 392 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge SERB project EEQ/2021/00217, Department of Chemistry (RGU) for the optical characterization facilities and Guwahati University SAIF Facility for XRD characterization facility. Ringshar Narzary and Tani Chekke also acknowledge Ministry of Tribal Affairs (Govt. of India) for providing financial assistance in form of fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Ringshar Narzary: experiment, analysis and paper writing. Tani Chekke: experiment. Soni Ngadong: experiment. Biswarup Satpati: conceptualization and analysis. Sayan Bayan: conceptualization and analysis. Upamanyu Das: conceptualization, analysis and supervision.

Corresponding author

Correspondence to Upamanyu Das.

Ethics declarations

Ethics Approval

The manuscript has not been submitted to any journal prior to this journal. The submitted work is original and has not been published elsewhere in any form or language.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and agreed to the published version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narzary, R., Chekke, T., Ngadong, S. et al. Defect-Mediated Self-Powered Ultraviolet Photodetection of Chemically Tailored Tin-Oxide Nanoparticles. Braz J Phys 53, 141 (2023). https://doi.org/10.1007/s13538-023-01356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01356-z

Keywords

Navigation