Skip to main content
Log in

Correlation Between the Intrinsic Fusion Barriers and Observed Excitation Functions of Evaporation Residue

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A correlation between the intrinsic fusion barriers as a function of the incident energy and the observed excitation functions of fusion-evaporation residues has been obtained by investigating eleven arbitrarily chosen heavy-ion fusion-evaporation reactions forming compound nuclei in the heavy and superheavy mass region. The intrinsic fusion barrier for a given heavy-ion reaction and incident energy is calculated from the fragmentation potential of the compound nucleus at its critical angular momentum. The fragmentation potentials are calculated by assuming that the fragments are spherical in shape for the reactions leading to the formation of compound nuclei in the heavy mass region and deformed and oriented in the superheavy mass region. It is found that the incident energy for which the intrinsic fusion barrier is minimum or close to the minimum value corresponds to the maximum of the measured fusion-evaporation residue cross-section. This calculated energy can be a suitable energy for synthesizing new elements; here, it is done for Z = 119 and is in good agreement with the estimates available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 618, 176–198 (1997)

    Article  ADS  Google Scholar 

  2. G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Nucl. Phys. A 633, 409–420 (1998)

    Article  ADS  Google Scholar 

  3. E.A. Cherepanov, Pramana -. J. Phys. 53, 619–630 (1999)

    Google Scholar 

  4. G.G. Adamian, N.V. Antonenko, W. Scheid, Nucl. Phys. A 678, 24–38 (2000)

    Article  ADS  Google Scholar 

  5. G. Fazio, G. Giardina, A. Lamberto et al., Eur. Phys. J. A 19, 89–104 (2004)

    Article  ADS  Google Scholar 

  6. A. Nasirov, G. Giardina, G. Mandaglio et al., J. Phys.: Conf. Ser. 282, 012010 (2011)

    Google Scholar 

  7. N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.P. Permjakov, V.V. Volkov, Phys. Lett. B 319, 425–430 (1993)

    Article  ADS  Google Scholar 

  8. G. Giardina, S. Hofmann, A.I. Muminov, A.K. Nasirov, Eur. Phys. J. A 8, 205 (2000)

    Article  ADS  Google Scholar 

  9. D. S. Verma, Kushmakshi, M. Manhas, J. Nucl. Phy. Mat. Sci. Rad. A. 9, 145-149 (2022)

  10. A. Nasirov, A. Fukushima, Y. Toyoshima et al., Nucl. Phys. A 759, 342–369 (2005)

    Article  ADS  Google Scholar 

  11. A. Nasirov, K. Kim, G. Mandaglio, G. Giardina, A. Muminov, Y. Kim, Eur. Phys. J. A 49, 147 (2013)

    Article  ADS  Google Scholar 

  12. D.A. Mayorov, T.A. Werke, M.C. Alfonso et al., Phys. Rev. C 90, 024602 (2014)

    Article  ADS  Google Scholar 

  13. T.A. Werke, D.A. Mayorov, M.C. Alfonso et al., Phys. Rev. C 92, 054617 (2015)

    Article  ADS  Google Scholar 

  14. K. Satou, H. Ikezoe, S. Mitsuoka et al., Phys. Rev. C 73, 034609 (2006)

    Article  ADS  Google Scholar 

  15. Yu. Ts. Oganessian, V.K. Utyonkov, Y.V. Lobanov, et al., Nucl. Phys. A 734, 109-123 (2004)

  16. Yu. Ts. Oganessian, F.S. Abdullin, C. Alexander, et al., J. Phys.: Conf. Ser. 580, 012038 (2015)

  17. Yu. Ts. Oganessian and V.K. Utyonkov, Rep. Prog. Phys. 78, 036301 (2015)

  18. L. Zhu, W. Xie, F. Zhang, Phys. Rev. C 89, 024615 (2014)

    Article  ADS  Google Scholar 

  19. M. Tanaka, P. Brionnet, M. Du et al., J. Phys. Soc. Jpn. 91, 084201 (2022)

    Article  ADS  Google Scholar 

  20. J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)

    Article  ADS  Google Scholar 

  21. R.K. Gupta, W. Scheid, W. Greiner, Phys. Rev. Lett. 35, 353 (1975)

    Article  ADS  Google Scholar 

  22. A. Sǎndulescu, R.K. Gupta, W. Scheid, W. Greiner, Phys. Lett. B 60(3), 225–228 (1976)

    Article  ADS  Google Scholar 

  23. R.K. Gupta, M. Balasubramaniam, R. Kumar, D. Singh, C. Beck, W. Greiner, Phys. Rev. C 71, 014601 (2005)

    Article  ADS  Google Scholar 

  24. N.J. Davidson, S.S. Hsiao, J. Markrama et al., Phys. Lett. B 315, 12–16 (1993)

    Article  ADS  Google Scholar 

  25. P.A. Seeger, Nucl. Phy. 25, 1–135 (1961)

    Article  ADS  Google Scholar 

  26. A.S. Jensen, J. Damgaard, Nucl. Phys. A 203, 578 (1973)

    Article  ADS  Google Scholar 

  27. W.D. Myers, W.J. Swiatecki, Nucl. Phy. 81, 1–60 (1966)

    Article  ADS  Google Scholar 

  28. M. Wang, G. Audi, F.G. Kondev, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  29. P. Moller, A. J. Sierk, T. Ichikawa and H. Sagawa, At. Data Nucl. Data tables 109110, 2016

  30. D. S. Verma and Kushmakshi, J. Radioanal. Nucl. Chem. 322, 139-146 (2019)

  31. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. 105, 427–462 (1977)

    Article  ADS  Google Scholar 

  32. A.J. Baltz, B.F. Bayman, Phys. Rev. C 26, 1969–1983 (1982)

    Article  ADS  Google Scholar 

  33. G. Royer, J. Mignen, J. Phys. G: Nucl. Part. Phys. 18, 1781–1792 (1992)

    Article  ADS  Google Scholar 

  34. R.K. Gupta, N. Singh, M. Manhas, Phys. Rev. C 70, 034608 (2004)

    Article  ADS  Google Scholar 

  35. C.Y. Wong, Phys. Rev. Lett. 31, 766–769 (1973)

    Article  ADS  Google Scholar 

  36. W.D. Myers, Nucl. Phys. A 204, 465–484 (1973)

    Article  ADS  Google Scholar 

  37. A. Nasirov, G. Giardina, G. Mandaglio et al., J. Phys.: Conf. Ser. 515, 012015 (2014)

    Google Scholar 

  38. C. Cabot, H. Gauvin, Y.L. Beyec et al., Nucl. Phys. A 427, 173–185 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central University of Himachal Pradesh for providing the necessary facility for completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalip Singh Verma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D.S., Vivek & Chauhan, P. Correlation Between the Intrinsic Fusion Barriers and Observed Excitation Functions of Evaporation Residue. Braz J Phys 53, 109 (2023). https://doi.org/10.1007/s13538-023-01319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01319-4

Keywords

Navigation