Skip to main content
Log in

Contact Process with Aperiodic Temporal Disorder

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigate the nonequilibrium critical behavior of the contact process with deterministic aperiodic temporal disorder implemented by choosing healing or infection rates according to a family of aperiodic sequences based on the quasiperiodic Fibonacci sequence. This family allows us to gauge the temporal fluctuations via a wandering exponent \(\omega\) and put our work in the context of the Kinzel–Vojta–Dickman criterion for the relevance of temporal disorder to the critical behavior of nonequilibrium models. By means of analytic and numerical calculations, the generalized criterion is tested in the mean-field limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambrige University Press, 2006)

  2. H. Hinrichsen, Non-equilibrium critical phenomena and phase transitions into absorbing states. Advances in Physics 49, 815 (2000). https://doi.org/10.1080/00018730050198152

    Article  ADS  Google Scholar 

  3. K.A. Takeuchi, M. Kuroda, H. Chaté, M. Sano, Directed percolation criticality in turbulent liquid crystals. Phys. Rev. Lett. 99, 234,503 (2007). https://doi.org/10.1103/PhysRevLett.99.234503https://link.aps.org/doi/10.1103/PhysRevLett.99.234503

  4. F. Alcaraz, M. Droz, M. Henkel, V. Rittenberg, Reaction-diffusion processes, critical dynamics, and quantum chains. Annals of Physics 230, 250 (1994). https://doi.org/10.1006/aphy.1994.1026, https://www.sciencedirect.com/science/article/pii/S0003491684710268

  5. J.D. Murray, Mathematical Biology I: An Introduction (Springer, 2007)

  6. T.E. Harris, Contact interactions on a lattice. Ann. Prob. 2, 969 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Tomé, M.J. Oliveira, Stochastic Dynamics and Irreversibility (Springer, 2015)

  8. M.S. Faria, D.J. Ribeiro, S.R. Salinas, Critical behavior of a contact process with aperiodic transition rates. Journal of Statistical Mechanics: Theory and Experiment 2008(01), P01,022 (2008). http://stacks.iop.org/1742-5468/2008/i=01/a=P01022

  9. H. Barghathi, D. Nozadze, T. Vojta, Contact process on generalized fibonacci chains: Infinite-modulation criticality and double-log periodic oscillations. Phys. Rev. E 89, 012,112 (2014). https://link.aps.org/doi/10.1103/PhysRevE.89.012112

  10. G. Ódor, Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004). https://doi.org/10.1103/RevModPhys.76.663. https://link.aps.org/doi/10.1103/RevModPhys.76.663

  11. A.J. Noest, New universality for spatially disordered cellular automata and directed percolation. Phys. Rev. Lett. 57, 90 (1986). https://doi.org/10.1103/PhysRevLett.57.90. https://link.aps.org/doi/10.1103/PhysRevLett.57.90

  12. J. Hooyberghs, F. Iglói, C. Vanderzande, Strong disorder fixed point in absorbing-state phase transitions. Phys. Rev. Lett. 90, 100,601 (2003). https://link.aps.org/doi/10.1103/PhysRevLett.90.100601

  13. T. Vojta, M. Dickison, Critical behavior and griffiths effects in the disordered contact process. Phys. Rev. E 72, 036,126 (2005). https://link.aps.org/doi/10.1103/PhysRevE.72.036126

  14. T. Vojta, M.Y. Lee, Nonequilibrium phase transition on a randomly diluted lattice. Phys. Rev. Lett. 96, 035,701 (2006). https://link.aps.org/doi/10.1103/PhysRevLett.96.035701

  15. J.A. Hoyos, Weakly disordered absorbing-state phase transitions. Phys. Rev. E 78, 032,101 (2008). https://link.aps.org/doi/10.1103/PhysRevE.78.032101

  16. F. Vazquez, J.A. Bonachela, C. López, M.A. Muñoz, Temporal Griffiths phases. Phys. Rev. Lett. 106, 235,702 (2011). http://link.aps.org/doi/10.1103/PhysRevLett.106.235702

  17. T. Vojta, J.A. Hoyos, Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments. EPL (Europhysics Letters) 112, 30,002 (2015). https://doi.org/10.1209/0295-5075/112/30002

  18. H. Barghathi, T. Vojta, J.A. Hoyos, Contact process with temporal disorder. Phys. Rev. E 94, 022,111 (2016). 10.1103/PhysRevE.94.022111. https://link.aps.org/doi/10.1103/PhysRevE.94.022111

  19. M.M. de Oliveira, C.E. Fiore, Temporal disorder does not forbid discontinuous absorbing phase transitions in low-dimensional systems. Phys. Rev. E 94, 052,138 (2016). https://link.aps.org/doi/10.1103/PhysRevE.94.052138

  20. C.M.D. Solano, M.M. de Oliveira, C.E. Fiore, Comparing the influence of distinct kinds of temporal disorder in a low-dimensional absorbing transition model. Phys. Rev. E 94, 042,123 (2016). https://link.aps.org/doi/10.1103/PhysRevE.94.042123

  21. A.H.O. Wada, M. Small, T. Vojta, Extinction transitions in correlated external noise. Phys. Rev. E 98, 022,112 (2018). https://link.aps.org/doi/10.1103/PhysRevE.98.022112

  22. C.E. Fiore, M.M. de Oliveira, J.A. Hoyos, Temporal disorder in discontinuous nonequilibrium phase transitions: General results. Phys. Rev. E 98, 032,129 (2018). https://link.aps.org/doi/10.1103/PhysRevE.98.032129

  23. J.M. Encinas, C.E. Fiore, Influence of distinct kinds of temporal disorder in discontinuous phase transitions. Phys. Rev. E 103, 032,124 (2021). https://link.aps.org/doi/10.1103/PhysRevE.103.032124

  24. A.H.O. Wada, J.A. Hoyos, Critical properties of the susceptible-exposed-infected model with correlated temporal disorder. Phys. Rev. E 103, 012,306 (2021). https://link.aps.org/doi/10.1103/PhysRevE.103.012306

  25. J.M. Luck, A classification of critical phenomena on quasi-crystals and other aperiodic structures. Europhysics Letters (EPL) 24, 359–364 (1993). https://doi.org/10.1209/0295-5075/24/5/007

  26. A.B. Harris, Effect of random defects on the critical behaviour of ising models. Journal of Physics C: Solid State Physics 7, 1671–1692 (1974). https://doi.org/10.1088/0022-3719/7/9/009

  27. W. Kinzel, Phase transitions of cellular automata. Z. Physik B - Condensed Matter 58, 229–244 (1985). https://doi.org/10.1007/BF01309255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T. Vojta, R. Dickman, Spatiotemporal generalization of the Harris criterion and its application to diffusive disorder. Phys. Rev. E 93, 032,143 (2016). https://link.aps.org/doi/10.1103/PhysRevE.93.032143

  29. H. Barghathi, S. Tackkett, T. Vojta, Extinction phase transitions in a model of ecological and evolutionary dynamics. The European Physical Journal B 90, 129 (2017). https://doi.org/10.1140/epjb/e2017-80220-7

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.A.H. thanks IIT Madras for a visiting position under the IoE program which facilitated the completion of this research work.

Funding

Financial support was received from Brazil, the National Council for Scientific and Technological Development (CNPq 465259/2014-6), the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology Complex Fluids (INCT-FCx), and the São Paulo Research Foundation (FAPESP 2014/50983-3). José A. Hoyos acknowledges financial support from CNPq (311952/2021-6) and Fapesp (2015/23849-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André P. Vieira.

Ethics declarations

Dedication

This paper is dedicated to Prof. Silvio Salinas, on the occasion of his 80th birthday.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Properties of the Generalized Fibonacci Sequence

For the generalized Fibonacci sequence defined by the substitution rule \(A\rightarrow AB^{k}\) and \(B\rightarrow A\), the numbers \(N_{A}^{\left( j\right) }\) and \(N_{B}^{\left( j\right) }\) of letters A and B in the finite sequence obtained after j iterations of the rule are given by the matrix equation

$$\begin{aligned} \left( \begin{array}{c} N_{A}^{\left(\kern 0.10emj\kern 0.10em\right) }\\ N_{B}^{\left(\kern 0.10emj\kern 0.10em\right) } \end{array}\right) =\varvec{\Omega }^{\kern 0.10emj\kern 0.10em}\left( \begin{array}{c} 1\\ 0 \end{array}\right) , \end{aligned}$$
(37)

in which we assume that the sequence is built starting from a single letter A and \(\varvec{\Omega }\) is the substitution matrix

$$\begin{aligned} \varvec{\Omega }=\left( \begin{array}{cc} 1 &{} 1\\ k &{} 0 \end{array}\right) . \end{aligned}$$
(38)

Diagonalizing \(\varvec{\Omega }\), we can write

$$\begin{aligned} \varvec{\Omega }=\textbf{U}\left( \begin{array}{cc} \zeta _{+} &{} 0\\ 0 &{} \zeta _{-} \end{array}\right) \textbf{U}^{-1},\qquad \textbf{U}=\left( \begin{array}{cc} \zeta _{-}/k &{} \zeta _{+}/k\\ 1 &{} 1 \end{array}\right) , \end{aligned}$$
(39)

with

$$\begin{aligned} \zeta _{\pm }=\frac{1\pm \sqrt{1+4k}}{2}, \end{aligned}$$
(40)

so that

$$\begin{aligned} \varvec{\Omega }^{\kern 0.10emj}=\textbf{U}\left( \begin{array}{cc} \zeta _{+}^{j} &{} 0\\ 0 &{} \zeta _{-}^{j} \end{array}\right) \textbf{U}^{-1}, \end{aligned}$$
(41)

leading to

$$\begin{aligned} N_{A}^{\left( j\right) }=\frac{\zeta _{+}^{j+1}-\zeta _{-}^{j+1}}{\sqrt{4k+1}},\quad N_{B}^{\left( j\right) }=k\frac{\zeta _{+}^{j}-\zeta _{-}^{j}}{\sqrt{4k+1}}. \end{aligned}$$
(42)

Taking into account that \(\zeta _{+}>\left| \zeta _{-}\right|\), the asymptotic fractions of letters A and B are, respectively,

$$\begin{aligned} x_{A}=\lim _{j\rightarrow \infty }\frac{N_{A}^{\left(\kern 0.10emj\kern 0.10em\right) }}{N_{j}}=\frac{1}{\zeta _{+}} \end{aligned}$$
(43)

and

$$\begin{aligned} x_{B}=\lim _{j\rightarrow \infty }\frac{N_{B}^{\left( j\right) }}{N_{j}}=1-\frac{1}{\zeta _{+}}, \end{aligned}$$
(44)

and thus,

$$\begin{aligned} N_{\kern 0.10emj\kern 0.10em}=N_{A}^{\left(\kern 0.10emj\kern 0.10em\right) }+N_{B}^{\left(\kern 0.10emj\kern 0.10em\right) }\sim \zeta _{+}^{\kern 0.10emj\kern 0.10em+2}. \end{aligned}$$
(45)

On the other hand, the fluctuations in the number of letters with respect to the asymptotic expectation values, gauged by

$$\begin{aligned} G_{j}=\left| N_{A}^{\left(\kern 0.10emj\kern 0.10em\right) }-x_{A}N_{\kern 0.10emj\kern 0.10em}\right| , \end{aligned}$$
(46)

are governed by

$$\begin{aligned} G_{j}\approx \frac{1}{\sqrt{4k+1}}\left| \zeta _{-}^{j}\left[ \zeta _{-}-x_{A}\left( \zeta _{-}-k\right) \right] \right| \propto \left| \zeta _{-}^{j}\right| \propto N_{j}^{\omega }, \end{aligned}$$
(47)

which defines the wandering exponent

$$\begin{aligned} \omega =\frac{\ln \left| \zeta _{-}\right| }{\ln \zeta _{+}}. \end{aligned}$$
(48)

If \(\omega <0\), the geometrical fluctuations get smaller as the sequence gets larger, and at long times the behavior should recover that of the uniform limit. On the other hand, if \(\omega >0\), fluctuations become larger and larger. The case \(\omega =0\) is marginal and may give rise to nonuniversal behavior. For the generalized Fibonacci sequence, we have \(\omega =-1<0\) for \(k=1\), \(\omega =0\) for \(k=2\), and \(\omega \approx 0.317>0\) for \(k\ge 3\).

Appendix B. Diagonalizing the Matrix \(\textbf{M}\)

The matrix \(\textbf{M}\) in Eq. (19) can be written as

$$\begin{aligned} \textbf{M}=\textbf{V}\left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ 0 &{} \Xi _{-} &{} 0\\ 0 &{} 0 &{} \Xi _{+} \end{array}\right) \textbf{V}^{-1}, \end{aligned}$$
(49)

with \(\Xi _{\pm }\) given by Eq. (23) and

$$\begin{aligned} \textbf{V}=\left( \begin{array}{ccc} -1 &{} -\zeta _{+}/k &{} -\zeta _{-}/k\\ 1 &{} \Xi _{+}/k^{2} &{} \Xi _{-}/k^{2}\\ 1 &{} 1 &{} 1 \end{array}\right) . \end{aligned}$$
(50)

Therefore,

$$\begin{aligned} \textbf{M}^{j}=\textbf{V}\left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ 0 &{} \Xi _{-}^{\kern 0.10emj} &{} 0\\ 0 &{} 0 &{} \Xi _{+}^{\kern 0.10emj} \end{array}\right) \textbf{V}^{-1}. \end{aligned}$$
(51)

Using

$$\begin{aligned} \left( \begin{array}{c} \ln r_{0}^{++}\\ \ln r_{0}^{-}\\ \ln r_{0}^{--} \end{array}\right) =\left( \begin{array}{c} k\left( \mu -\lambda _{B}\right) \\ \mu -\lambda _{A}\\ \left( k+1\right) \left( \mu -\lambda _{A}\right) \end{array}\right) \end{aligned}$$
(52)

and

$$\begin{aligned} \left( \begin{array}{c} \Delta t_{0}^{++}\\ \Delta t_{0}^{-}\\ \Delta t_{0}^{--} \end{array}\right) =\left( \begin{array}{c} k\\ 1\\ k+1 \end{array}\right) \Delta t \end{aligned}$$
(53)

in Eqs. (17) and (18), we obtain Eqs. (21) and (22) with

$$\begin{aligned} \eta _{0}=\frac{\left( \mu -\lambda _{A}\right) -k\left( \mu -\lambda _{B}\right) }{k-2}=-\eta _{1}=-\eta _{2}, \end{aligned}$$
(54)
$$\begin{aligned} \eta _{0}^{\pm }=\mp \Delta \left[ \left( \Xi _{\pm }-k^{2}\right) \left( \mu -\lambda _{A}\right) +k\left( \zeta _{\pm }+k\zeta _{\mp }\right) \left( \mu -\lambda _{B}\right) \right] , \end{aligned}$$
(55)
$$\begin{aligned} \eta _{1}^{\pm }=\mp \Delta \left[ \left( \zeta _{\pm }+k\zeta _{\mp }\right) \left( \mu -\lambda _{A}\right) +k\left( \zeta _{\pm }-k\right) \left( \mu -\lambda _{B}\right) \right] , \end{aligned}$$
(56)
$$\begin{aligned} \eta _{2}^{\pm }= & {} \mp \Delta \left\{ \left[ \Xi _{\pm }-k\left( k-1\right) \zeta _{\pm }\right] \left( \mu -\lambda _{A}\right) \right. \nonumber \\{} & {} +\left. k\left( \Xi _{\pm }-k^{2}\right) \left( \mu -\lambda _{B}\right) \right\} , \end{aligned}$$
(57)
$$\begin{aligned} \tau _{0}=-\frac{k-1}{k-2}=-\tau _{1}=-\tau _{2}, \end{aligned}$$
(58)
$$\begin{aligned} \tau _{0}^{\pm }=\mp \Delta \left[ \left( \Xi _{\pm }-k^{2}\right) +k\left( \zeta _{\pm }+k\zeta _{\mp }\right) \right] , \end{aligned}$$
(59)
$$\begin{aligned} \tau _{1}^{\pm }=\mp \Delta \left( \zeta _{\pm }-k\left( k-1\right) \right) , \end{aligned}$$
(60)
$$\begin{aligned} \tau _{2}^{\pm }=\mp \Delta \left[ \left( k+1\right) \Xi _{\pm }-k\left( k-1\right) \zeta _{\pm }-k^{3}\right] , \end{aligned}$$
(61)

in which

$$\begin{aligned} \Delta ^{-1}=\left( k-2\right) \sqrt{1+4k}. \end{aligned}$$
(62)

It is interesting to notice that

$$\begin{aligned} \eta _{i}^{\pm }=\gamma _{i}^{\pm }\left( \mu -\frac{1}{\zeta _{\pm }}\lambda _{A}-\left( 1-\frac{1}{\zeta _{\pm }}\right) \lambda _{B}\right) , \end{aligned}$$
(63)

where \(\gamma _{0}^{\pm }=\pm \Delta \left( \zeta _{\pm }\left( k^{2}-k-1\right) -k\right)\), \(\gamma _{1}^{\pm }=\pm \Delta \left( k\left( k-1\right) -\zeta _{\pm }\right)\), and \(\gamma _{2}^{\pm }=\pm \Delta \left( k\left( k^{2}-1\right) -\left( 2k+1\right) \zeta _{\pm }-k^{2}\zeta _{\mp }\right)\). It is easy to show that \(\eta _{i}^{+}>0\) for \(k\ge 0\).

For \(k=2\), \(\eta _{i}\), \(\eta _{i}^{-}\), \(\tau _{i}\) and \(\tau _{i}^{-}\) are divergent. However, the following useful quantities remain finite:

$$\begin{aligned} \lim _{k\rightarrow 2}\left( \eta _{0}+\eta _{0}^{-}\right) =\frac{2}{9}\left( \mu +4\lambda _{A}-5\lambda _{B}\right) , \end{aligned}$$
(64)
$$\begin{aligned} \lim _{k\rightarrow 2}\left( \eta _{1}+\eta _{1}^{-}\right) =\frac{1}{9}\left( \mu -5\lambda _{A}-4\lambda _{B}\right) , \end{aligned}$$
(65)
$$\begin{aligned} \lim _{k\rightarrow 2}\left( \eta _{2}+\eta _{2}^{-}\right) =\frac{1}{9}\left( -5\mu -11\lambda _{A}+16\lambda _{B}\right) , \end{aligned}$$
(66)
$$\begin{aligned} \lim _{k\rightarrow 2}\eta _{0}^{+}=\frac{16}{9}\left[ \mu -\frac{1}{2}\left( \lambda _{A}+\lambda _{B}\right) \right] , \end{aligned}$$
(67)
$$\begin{aligned} \lim _{k\rightarrow 2}\eta _{1}^{+}=\frac{8}{9}\left[ \mu -\frac{1}{2}\left( \lambda _{A}+\lambda _{B}\right) \right] , \end{aligned}$$
(68)
$$\begin{aligned} \lim _{k\rightarrow 2}\eta _{2}^{+}=\frac{32}{9}\left[ \mu -\frac{1}{2}\left( \lambda _{A}+\lambda _{B}\right) \right] , \end{aligned}$$
(69)

\(\lim _{k\rightarrow 2}\left( \tau _{0}+\tau _{0}^{-}\right) =\frac{2}{9},\) \(\lim _{k\rightarrow 2}\left( \tau _{1}+\tau _{1}^{-}\right) =\frac{1}{9},\) \(\lim _{k\rightarrow 2}\left( \tau _{2}+\tau _{2}^{-}\right) =-\frac{5}{9},\) \(\lim _{k\rightarrow 2}\tau _{0}^{+}=\frac{16}{9},\) \(\lim _{k\rightarrow 2}\tau _{1}^{+}=\frac{8}{9},\) and \(\lim _{k\rightarrow 2}\tau _{2}^{+}=\frac{32}{9}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, A.Y.O., Hoyos, J.A. & Vieira, A.P. Contact Process with Aperiodic Temporal Disorder. Braz J Phys 53, 84 (2023). https://doi.org/10.1007/s13538-023-01298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01298-6

Keywords

Navigation