Skip to main content

Advertisement

Log in

The Influence of Doping Perimidine Ruthenium Complexes on Structural, Optic, and Residual Stress Properties of ZnO Thin Films

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Perimidine ruthenium complexes ([Ru(L1-2)(p-cymene)Cl]Cl) were synthesized and were used to produce Ru-doped ZnO thin films by the sol–gel spin-coating method. These films were characterized using XRD, SEM, FT-IR, UV–Vis, and photoluminescence (PL) spectra. It was determined by XRD analysis that all films have a hexagonal wurtzite structure. The residual stress was generally compressive and ranged from − 2.117 to 1.4 GPa as the ruthenium content increased from 0 to 6%. The crystal quality tended to increase, and the residual stress reduced with increasing Ru content. In the visible range, all the films exhibited transmittance greater than 70%. Further, the optical bandgap was 3.20 eV for pure film and bandgap of Ru-doped films varied between 2.76 and 3.18 eV. This research shows that new high conjugated structures are promising as dopant materials for the ZnO thin film, and good crystalline and optical properties could be obtained from the Ru-doped ZnO films prepared for nano-optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available to download.

References

  1. M. Jacobs, S. Muthukumar, A. Panneer Selvam, J. Engel Craven, S. Prasad, Biosens. Bioelectron. 55, 7 (2014). https://doi.org/10.1016/j.bios.2013.11.022

  2. M. Ali, N. Tit, Z.H. Yamani, Int. J. Energy Res. 44, 10926 (2020). https://doi.org/10.1002/er.5656

    Article  Google Scholar 

  3. X. Wang, Z. Pan, Y. Wu, X. Ding, X. Hong, G. Xu, M. Liu, Y. Zhang, W. Li, Nano Res. 12, 525 (2019). https://doi.org/10.1007/s12274-018-2245-z

    Article  Google Scholar 

  4. T. Nagao, T.D. Dao, R.P. Sugavaneshwar, K. Chen, K.K. Nanda, Radiat. Eff. Defects Solids 171, 22 (2016). https://doi.org/10.1080/10420150.2016.1160906

    Article  ADS  Google Scholar 

  5. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials (Basel). 7, 2833 (2014). https://doi.org/10.3390/ma7042833

    Article  ADS  Google Scholar 

  6. G. Demircan, E.F. Gurses, A. Acikgoz, S. Yalcin, B. Aktas, Mol. Cryst. Liq. Cryst. 709, 61 (2020). https://doi.org/10.1080/15421406.2020.1816009

    Article  Google Scholar 

  7. G. Demircan, S. Yalcin, K. Alivi, G. Ceyhan, A. Acikgoz, M.V. Balak, B. Aktas, R. Das, Opt. Mater. (Amst). 126, 112163 (2022). https://doi.org/10.1016/j.optmat.2022.112163

    Article  Google Scholar 

  8. V. Guckan, V. Altunal, A. Ozdemir, V. Tsiumra, Y. Zhydachevskyy, Z. Yegingil, J. Alloys Compd. 823, 153878 (2020). https://doi.org/10.1016/j.jallcom.2020.153878

    Article  Google Scholar 

  9. L. Znaidi, Mater. Sci. Eng. B 174, 18 (2010). https://doi.org/10.1016/j.mseb.2010.07.001

    Article  Google Scholar 

  10. N. Bouhssira, S. Abed, E. Tomasella, J. Cellier, A. Mosbah, M.S. Aida, M. Jacquet, Appl. Surf. Sci. 252, 5594 (2006). https://doi.org/10.1016/j.apsusc.2005.12.134

    Article  ADS  Google Scholar 

  11. N. Kumar, A.H. Chowdhury, B. Bahrami, M.R. Khan, Q. Qiao, M. Kumar, Thin Solid Films 700, 137916 (2020). https://doi.org/10.1016/j.tsf.2020.137916

    Article  ADS  Google Scholar 

  12. J. Mass, P. Bhattacharya, R. Katiyar, Mater. Sci. Eng. B 103, 9 (2003). https://doi.org/10.1016/S0921-5107(03)00127-2

    Article  Google Scholar 

  13. M. Wang, J. Wang, W. Chen, Y. Cui, L. Wang, Mater. Chem. Phys. 97, 219 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.072

    Article  Google Scholar 

  14. K.S. Pakhare, B.M. Sargar, R.K. Mane, S.B. Wategaonkar, Macromol. Symp. 393, 2000084 (2020). https://doi.org/10.1002/masy.202000084

    Article  Google Scholar 

  15. S. Mersagh Dezfuli, M. Sabzi, Appl. Phys. A 125, 557 (2019). https://doi.org/10.1007/s00339-019-2854-8

  16. E. John, Nature's building blocks: an AZ guide to the elements, 2nd edn. (Oxford Univ. Press, 2011), p.720.

  17. I. Zuba, M. Zuba, M. Piotrowski, A. Pawlukojć, Appl. Radiat. Isot. 162, 109176 (2020). https://doi.org/10.1016/j.apradiso.2020.109176

    Article  Google Scholar 

  18. J.-Y. Kim, K.-H. Kim, S.-B. Yoon, H.-K. Kim, S.-H. Park, K.-B. Kim, Nanoscale 15, 6804 (2013). https://doi.org/10.1039/C3NR01233F

    Article  ADS  Google Scholar 

  19. H. Cui, J.-H. Park, J.-G. Park, J. Electrochem. Soc. 159, H335 (2012). https://doi.org/10.1149/2.103203jes

    Article  Google Scholar 

  20. R. Vettumperumal, S. Kalyanaraman, R. Thangavel, J. Mol. Eng. Mater. 05, 1750004 (2017). https://doi.org/10.1142/S2251237317500046

    Article  Google Scholar 

  21. H. Gómez-Pozos, J. González-Vidal, G. Torres, J. Rodríguez-Baez, A. Maldonado, M. de la Luz Olvera, D. Acosta, M. Avendaño-Alejo, and L. Castañeda, Sensors 13, 3432 (2013). https://doi.org/10.3390/s130303432

  22. J.-S. Jeng, Microelectron. Eng. 149, 1 (2016). https://doi.org/10.1016/j.mee.2015.08.014

    Article  Google Scholar 

  23. F. Sarf, I. Karaduman Er, E. Yakar, S. Acar, J. Mater. Sci. Mater. Electron. 31, 10084 (2020). https://doi.org/10.1007/s10854-020-03554-w

  24. C.S. Allardyce, A. Dorcier, C. Scolaro, P.J. Dyson, Appl. Organomet. Chem. 19, 1–10 (2005). https://doi.org/10.1002/aoc.725

    Article  Google Scholar 

  25. J. Iida, E.T. Bell-Loncella, M.L. Purazo, Y. Lu, J. Dorchak, R. Clancy, J. Slavik, M. Lou Cutler, C.D. Shriver, J. Transl. Med. 14, (2016). https://doi.org/10.1186/s12967-016-0797-9

  26. F. Li, J.G. Collins, F.R. Keene, Chem. Soc. Rev. 44, 2529 (2015). https://doi.org/10.1039/C4CS00343H

    Article  Google Scholar 

  27. V.A. Anisimova, A.F. Pozharskii, L.E. Nivorozhkin, V.I. Minkin, Chem. Heterocycl. Compd. 14(1), 89–92 (1978). https://doi.org/10.1007/BF00635953

    Article  Google Scholar 

  28. A.M. Giani, M. Lamperti, A. Maspero, A. Cimino, R. Negri, G.B. Giovenzana, G. Palmisano, L. Nardo, J. Lumin. 179, 384 (2016). https://doi.org/10.1016/j.jlumin.2016.07.033

    Article  Google Scholar 

  29. E. Aytar, V. Kasim, Selçuk Üniversitesi Fen Fakültesi Fen Derg. 45, 60 (2019). https://dergipark.org.tr/en/download/article-file/705415

  30. E. Aytar, PhD Thesis, Department of Chemistry, Harran University, p.156 (2019).

  31. M. Ozen, G. Demircan, M. Kisa, A. Acikgoz, G. Ceyhan, Y. Işıker, Mater. Chem. Phys. 278, 125689 (2022). https://doi.org/10.1016/j.matchemphys.2021.125689

    Article  Google Scholar 

  32. G. Demircan, M. Kisa, M. Ozen, A. Acikgoz, Mech. Compos. Mater. 57, 503–516 (2021). https://doi.org/10.1007/s11029-021-09973-y

    Article  ADS  Google Scholar 

  33. A. Acikgoz, G. Demircan, D. Yılmaz, B. Aktas, S. Yalcin, N. Yorulmaz, Mater. Sci. Eng. B 276, 115519 (2022). https://doi.org/10.1016/j.mseb.2021.115519

    Article  Google Scholar 

  34. S.C. Navale, V. Ravi, I.S.S. Mulla, Sensors Actuators B Chem. 139, 466 (2009). https://doi.org/10.1016/j.snb.2009.03.068

    Article  Google Scholar 

  35. Y.-S. Choi, C.-G. Lee, S. Cho, Thin Solid Films 289, 153 (1996). https://doi.org/10.1016/S0040-6090(96)08923-7

    Article  ADS  Google Scholar 

  36. E. Aytar, V.T. Kasumov, First International Congress on Modern Sciences Tashkent Chemical-Technological Institute, Tashkent, May 10–11, p.817–833 (2022).

  37. A. Ghosh, N. Kumari, S. Tewari, A. Bhattacharjee, Mater. Sci. Eng. B 196, 7 (2015). https://doi.org/10.1016/j.mseb.2015.02.012

    Article  Google Scholar 

  38. M.A. Korshunov, V.F. Shabanov, Nanotechnologies Russ. 5, 73 (2010). https://doi.org/10.1134/S1995078010010076

    Article  Google Scholar 

  39. D.T. Speaks, Int. J. Mech. Mater. Eng. 15, 2 (2020). https://doi.org/10.1186/s40712-019-0113-6

    Article  Google Scholar 

  40. V. Malapati, R. Singh, Int. J. Nanosci. 16, 1650036 (2017). https://doi.org/10.1142/S0219581X16500368

    Article  Google Scholar 

  41. A. Kaphle, M.F. Borunda, P. Hari, Mater. Sci. Semicond. Process. 84, 131 (2018). https://doi.org/10.1016/j.mssp.2018.05.019

    Article  Google Scholar 

  42. A. Tuan Thanh Pham, P. Thanh Ngoc Vo, H. Kieu Thi Ta, N. Kim Pham, H. Thi Lai, H. Nhu Thi Tran, V. Cao Tran, T. Le Hoang Doan, S. Park, T. Bach Phan, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 261, 114712 (2020). https://doi.org/10.1016/j.mseb.2020.114712

  43. S. Al-Khawaja, B. Abdallah, S. Abou Shaker, M. Kakhia, Compos. Interfaces 22, 221 (2015). https://doi.org/10.1080/15685543.2015.1002259

  44. S. Liu, G. Li, M. Lan, Y. Piao, K. Miyazaki, Q. Wang, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 76, 259 (2020). https://doi.org/10.1107/S2052520620002383/rm5027sup1.pdf

  45. S. Kumar, P. Kaur, C.L. Chen, R. Thangavel, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, J. Alloys Compd. 588, 705 (2014). https://doi.org/10.1016/j.jallcom.2013.11.137

    Article  Google Scholar 

  46. E. Burstein, Phys. Rev. 93, 632 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  ADS  Google Scholar 

  47. T.S. Moss, Proc. Phys. Soc. Sect. B 67, 775 (1954). https://doi.org/10.1088/0370-1301/67/10/306

    Article  ADS  Google Scholar 

  48. E. Isbilir, Z. Serbetci, M. Soylu, Superlattices Microstruct. 67, 144 (2014). https://doi.org/10.1016/j.spmi.2013.12.017

    Article  ADS  Google Scholar 

  49. A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Nanomaterials 10, 857 (2020). https://doi.org/10.3390/nano10050857

    Article  Google Scholar 

  50. S. Das, U.K. Ghorai, R. Dey, C.K. Ghosh, M. Pal, RSC Adv. 11, 335 (2021). https://doi.org/10.1039/D0RA04766J

    Article  ADS  Google Scholar 

  51. C.Y. Tsay, W.T. Hsu, Materials 10, 1379 (2017). https://doi.org/10.3390/ma10121379

    Article  ADS  Google Scholar 

  52. M.M. Obeid, H.R. Jappor, K. Al-Marzoki, I.A. Al-Hydary, S.J. Edrees, M.M. Shukur, RSC Adv. 9, 33207 (2019). https://doi.org/10.1039/C9RA04750F

    Article  ADS  Google Scholar 

  53. R. Vinoth, S.G. Babu, V. Bharti, V. Gupta, M. Navaneethan, S.V. Bhat, C. Muthamizhchelvan, P.C. Ramamurthy, C. Sharma, D.K. Aswal, Y. Hayakawa, B. Neppolian, Sci. Rep. 7, 43133 (2017). https://doi.org/10.1038/srep43133

    Article  ADS  Google Scholar 

  54. P.K. Singh, N. Singh, M. Singh, S.K. Singh, P. Tandon, Appl. Phys. A 126, 321 (2020). https://doi.org/10.1007/s00339-020-3439-2

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the manuscript and permit it for submission.

Corresponding author

Correspondence to Abuzer Acikgoz.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 596 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demircan, G., Acikgoz, A., Yalcin, S. et al. The Influence of Doping Perimidine Ruthenium Complexes on Structural, Optic, and Residual Stress Properties of ZnO Thin Films. Braz J Phys 53, 20 (2023). https://doi.org/10.1007/s13538-022-01245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01245-x

Keywords

Navigation