Skip to main content
Log in

Dynamical Behavior of the Solutions of Coupled Boussinesq–Burgers Equations Occurring at the Seaside Beaches

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Since water lies at the heart of sustainable development and climate change adaptation, therefore, the objective of the present research work is to derive a new variety of analytical solutions for a system of partial differential equations that depicts the propagation of shallow water waves at seaside beaches or in lakes. The \((1+1)\)-Boussinesq–Burgers system is solved by using the classical Lie-symmetry analysis and optimal subalgebra using a direct algorithm. Using the one-parameter optimal system, one-dimensional and two-dimensional optimal subalgebras are generated for the system to get a greater variety of solutions. Analytic solutions in this study are different from the nature of research reported earlier. Constructed solutions are represented graphically and show parabolic, multisoliton, periodic, dark, and bright solitons and progressive behaviors. The profiles of solitons could have some implications for port and coastal architecture. Additionally, conserved vectors demonstrate that the system is integrable. As far as the authors are aware, the conserved vectors are calculated and the optimal subalgebra technique is employed first time for the system. Coastal and civil engineers can use the solutions of the system to frame the architecture of the coasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Data sharing does not apply to this article.

References

  1. V.V. Titov, Numerical modeling of long wave run-up, Pro-Quest Dissertations and Theses; Thesis (Ph.D.)-University of Southern California 58(5), (1997)

  2. M.M. Mousa, Efficient numerical scheme based on the method of lines for the shallow water equations. J. Ocean Eng. Sci. 3, 303–309 (2018)

    Google Scholar 

  3. D.J. Kaup, A higher-order water-wave equation and the method for solving it. Theor. Phys. 54, 396–408 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  4. I.E. Mhlanga, M.K. Chaudry, Exact solutions of generalized Boussinesq-Burgers equations and (2 + 1)-dimensional Davey-Stewartson equations. J. Appl. Math. 2012(389017), 1–8 (2012)

    MathSciNet  MATH  Google Scholar 

  5. X. Li, A. Chen, Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation. Phys. Lett. A 342, 413–420 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. X. Li, A. Chen, Darboux transformation and soliton solutions for Boussinesq-Burgers equation. Chaos Solit. Fractals 27, 43–49 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  7. L. Zhang, L.F. Zhang, C.Y. Li, Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation. Chin. Phys. B 17, 403–410 (2008)

    ADS  Google Scholar 

  8. M. Khalfallah, Exact traveling wave solutions of the Boussinesq-Burgers equation. Math. Comput. Model 49, 666–671 (2009)

    MathSciNet  MATH  Google Scholar 

  9. M. Khalfallah, A.S. Abdel Rady, On soliton solutions for Boussinesq–Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15, 886–894 (2010)

  10. A.S. Abdel Rady, E.S. Osman, M. Khalfallah, Multi-soliton solution, rational solution of the Boussinesq–Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15, 1172–1176 (2010)

  11. P. Wang, B. Tian, W.J. Liu, X. Lü, Y. Jiang, Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves. Appl. Math. Comput. 218, 1726–1734 (2011)

    MathSciNet  MATH  Google Scholar 

  12. G. Ebadi, N. Yousefzadeh, H. Triki, A. Yildirim, A. Biswas, Envelope solitons, periodic waves and other solutions to Boussinesq-Burgers equation. Rom. Rep. Phys. 64, 915–932 (2012)

    Google Scholar 

  13. S. Saha Ray, L.K. Ravi, S. Sahoo, New exact solutions of coupled Boussinesq–Burgers equations by exp-function method. J. Ocean Eng. Sci. 2, 34–46 (2017)

  14. Y.H. Wang, CTE method to the interaction solutions of Boussinesq-Burgers equations. Appl. Math. Lett. 38, 100–105 (2014)

    MathSciNet  MATH  Google Scholar 

  15. A.K. Gupta, S. Saha Ray, Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq–Burger equations. Comput. Fluids 103, 34–41 (2014)

  16. X.Z. Li, B. Li, J.L. Chen, M.L. Wang, Exact solutions to the Boussinesq-Burgers equations. J. Appl. Math. Phys. 5, 1720–1724 (2017)

    Google Scholar 

  17. B.A. Mahmood, M.A. Yousif, A residual power series technique for solving Boussinesq-Burgers equations. Cogent. Math. 4(1279398), 1–11 (2017)

    MathSciNet  MATH  Google Scholar 

  18. X. Geng, Y. Wu, Finite-band solutions of the classical Boussinesq-Burgers equations. J. Math. Phys. 40, 2971–2982 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  19. P. Guo, X. Wu, L. Wang, New multiple-soliton (kink) solutions for the high order Boussinesq-Burgers equation. Waves Random Complex Media 26, 383–396 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  20. A.M. Wazwaz, A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation. Filomat 31, 831–840 (2017)

    MathSciNet  MATH  Google Scholar 

  21. J.Z. Iaeng, CTE method and exact solutions for a high-order Boussinesq-Burgers equation. Int. J. Appl. Math. 50, 440–444 (2020)

    Google Scholar 

  22. X.Y. Gao, Y.J. Guo, W.R. Shan, Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system. Chaos Solitons Fractals 147, 1–4 (2021)

    MathSciNet  MATH  Google Scholar 

  23. A. Jaradat, M.S.M. Noorani, M. Alquran, H.M. Jaradat, Construction and solitary wave solutions of two-mode higher-order Boussinesq-Burger system. Adv. Differ. Equ. 376, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  24. J. Zuo, Painlevè analysis, Lax pairs and new analytic solutions for a high-order Boussinesq-Burgers equation. Int. J. Appl. Math. 48, 337–341 (2018)

    MathSciNet  Google Scholar 

  25. M.J. Dong, S.F. Tian, X.W. Yan, T.T. Zhang, Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq-Burgers equation. Nonlinear Dyn. 95, 273–291 (2019)

    MATH  Google Scholar 

  26. X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the Earth, Enceladus and Titan: higher-order Boussinesq-Burgers system, auto-and non-auto-Bäcklund. Appl. Math. Lett. 104(106170), 1–10 (2019)

    ADS  MATH  Google Scholar 

  27. X.Y. Gao, Y.J. Guo, W.R. Shan, Bilinear forms through the binary bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water waves in a lake or near an ocean beach. Commun. Theor. Phys. 72(095002), 886–894 (2020)

    MATH  Google Scholar 

  28. G.A. El, R.H.J. Grimshaw, M.V. Pavlov, Integrable shallow water wave equations and undular bores. Appl. Math. 106, 157–186 (2001)

    MathSciNet  MATH  Google Scholar 

  29. N.H. Ibragimov, A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

    MathSciNet  MATH  Google Scholar 

  30. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer-Verlag, New York, 1974)

    MATH  Google Scholar 

  31. P.J. Olver, Applications of Lie groups to differential equations (Springer-Verlag, New York, 1993)

    MATH  Google Scholar 

  32. L.V. Ovsiannikov, Group analysis of differential equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  33. Z.L. Zhao, B. Han, Lie symmetry analysis, Bäcklund transformations and exact solutions of a (2 + 1)-dimensional Boiti-Leon-Pempinelli system. J. Math. Phys. 58, 1–15 (2017)

    MATH  Google Scholar 

  34. K.S. Chou, G.X. Li, A note on optimal systems for the heat equation. J. Math. Anal. Appl. 261, 741–751 (2001)

    MathSciNet  MATH  Google Scholar 

  35. K.S. Chou, C. Qu, Optimal systems and group classification of (2 + 1)-dimensional heat equation. Acta. Appl. Math. 83, 257–287 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  36. X. Hu, Y. Li, Y. Chen, A direct algorithm of one dimensional optimal system for the group invariant solutions. J. Math. Phys. 56(053504), 1–17 (2015)

    MathSciNet  Google Scholar 

  37. T.R. Sekhar, P. Satapathy, Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72, 1436–1443 (2016)

    MathSciNet  MATH  Google Scholar 

  38. A.H. Abdel Kader, M.S. Abdel Latif, D. Baleanu, Rouge wave, W-shaped, bright, and dark soliton solutions for a generalized quasi-1D Bose–Einstein condensate system with local M–derivative. Braz. J. Phys. 52(7), 1–8 (2022)

  39. R. Kumar, A. Kumar, Optimal subalgebra of GKP by using Killing form, conservation law and some more solutions. Int. J. Appl. Comput. Math. 8(11), 1–22 (2021)

    MathSciNet  Google Scholar 

  40. R. Kumar, A. Kumar, Dynamical behavior of similarity solutions of CKOEs with conservation law. Appl. Math. Comput. 422, 1–18 (2022)

    MathSciNet  MATH  Google Scholar 

  41. R. Kumar, A. Kumar, More solutions of coupled equal width wave equations arising in plasma and fluid dynamics. Int. J. Appl. Comput. Math 8(186), 1–13 (2022)

    MathSciNet  MATH  Google Scholar 

  42. R. Kumar, A. Kumar, Some invariant solutions of coupled Konno-Oono equations arising in electromagnetic and quantum fields. Phys. Scr. 97(075501), 1–11 (2022)

    Google Scholar 

  43. R. Kumar, R.S. Verma, Dynamics of invariant solutions of mKDV-ZK arising in a homogeneous magnetised plasma. Nonlinear Dyn. (2022). https://doi.org/10.21203/rs.3.rs-1411278/v1

  44. R. Kumar, R.S. Verma, A.K. Tiwari, On similarity solutions to (2 + 1)-dispersive long-wave equations. J. Ocean Eng. Sci. 1–18 (2021)

  45. R. Kumar, R.S. Verma, Dynamics of some new solutions to the coupled DSW equations traveling horizontally on the seabed. J. Ocean Eng. Sci. https://doi.org/10.1016/j.joes.2022.04.015

  46. M. Kumar, K. Manju, Closed form invariant solutions of (2 + 1)-dimensional extended shallow water wave equation via Lie approach. Eur. Phys. J. Plus 135, 1–14 (2020)

    Google Scholar 

  47. M. Kumar, K. Manju, Lie symmetry transformation, conservation laws and nonlinear self-adjointness of (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Eur. Phys. J. Plus 137, 1–16 (2022)

    Google Scholar 

  48. D.V. Tanwar, M. Kumar, Lie symmetries, exact solutions and conservation laws of the Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Dyn. 106, 3453–3468 (2021)

    Google Scholar 

  49. D.V. Tanwar, Optimal system, symmetry reductions and group-invariant solutions of (2 + 1)-dimensional ZK-BBM equation. Phys. Scr. 96(6), 065215 (2021)

  50. D.V. Tanwar, M. Kumar, On Lie symmetries and invariant solutions of Broer-Kaup-Kupershmidt equation in shallow water of uniform depth. J. Ocean Eng. Sci. https://doi.org/10.1016/j.joes.2022.04.027

  51. D.V. Tanwar, Lie symmetry reductions and generalized exact solutions of Date-Jimbo-Kashiwara-Miwa equation. Chaos Solitons Fractals 162, 112414 (2022)

  52. D.V. Tanwar, M. Kumar, A.K. Tiwari, Lie symmetries, invariant solutions and phenomena dynamics of Boiti-Lon-Pempinelli system. Phys. Scr. 97(7), 075209 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Pandey, K.S. & Kumar, A. Dynamical Behavior of the Solutions of Coupled Boussinesq–Burgers Equations Occurring at the Seaside Beaches. Braz J Phys 52, 201 (2022). https://doi.org/10.1007/s13538-022-01195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01195-4

Keywords

Navigation