Skip to main content
Log in

Effect of a Trifluorophenyl-Based Monomer on the Electro-optic Performances of Polymer-Stabilized Blue Phase Liquid Crystals

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We synthesized one novel mono-functional acrylate monomer. The effect of the new monomer on blue phase liquid crystal stabilization and electro-optical properties was investigated with different reactive polymer concentration and combination. The temperature range of blue phase samples was widened over 50 ° C including room temperature through the use of polymer stabilization. Electro-optical properties including lower driving voltage (69.8 V), lower hysteresis (3.9%), lower response time (0.468 ms), and higher Kerr constant (9.4 nm/V2) were obtained by optimizing the concentration of different composites. They are strongly influenced by the interface energy between the liquid crystal molecules and polymer combination system. It is found that hysteresis is sensitive to the polymer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Reinitzer, Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie (Wein), 9, 421–441 (1888). Translation: contributions to the understanding of cholesterol. Liq. Cryst. 5, 7–18 (1989)

    Google Scholar 

  2. P.P. Crooker, in Chirality of liquid crystals, ed. by H.-S. Kitzerow, C. Bahr. Blue phases (Springer-Verlag, New York, 2001), pp. 186–222

    Google Scholar 

  3. H. Kikuchi, Liquid crystalline blue phases. Struct. Bond. 128, 99–117 (2008)

    Google Scholar 

  4. H. Kikuchi, M. Yokota, Y. Hisakado, et al., Polymer stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002)

    ADS  Google Scholar 

  5. H.J. Coles, M.N. Pivnenko, Liquid crystal blue phases with a wide temperature range. Nat. Mater. 436, 997–1000 (2005)

    Google Scholar 

  6. I. Dierking, W. Blenkhorn, E. Credland, W. Drake, R. Kociuruba, B. Kayser, T. Michael, Stabilising liquid crystalline blue phases. Soft Matter. 8, 4355–4362 (2012)

    ADS  Google Scholar 

  7. H. Yoshida, Y. Tanaka, K. Kawamoto, et al., Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2, 121501 (2009)

    ADS  Google Scholar 

  8. L. Wang, W. He, X. Xiao, et al., Hysteresis free blue phase liquid crystal stabilized by ZnS nanoparticles. Small 8, 2189–2193 (2012)

    Google Scholar 

  9. M. Lavrič, G. Cordoyiannis, S. Kralj, et al., Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. Appl. Opt. 52, 47–52 (2013)

    Google Scholar 

  10. E. Karatairi, B. Rožič, Z. Kutnjak, et al., Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases. Phys. Rev. E 81, 041703–1-5 (2010)

    Google Scholar 

  11. W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, H. Yang, Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative. Adv. Mater. 21, 2050–2053 (2009)

    Google Scholar 

  12. I. Gvozdovskyy, Blue phases’ of highly chiral thermotropic liquid crystals with a wide range of near-room temperature. Liq. Cryst. 42, 1391–1404 (2015)

    Google Scholar 

  13. A. Yoshizawa, M. Sato, J. Rokunohe, A blue phase observed for a novel chiral compound possessing molecular biaxiality. J. Mater. Chem. 15, 3285–3290 (2005)

    Google Scholar 

  14. S. Taushanoff, K.V. Le, J. Williams, et al., Stable amorphous blue phase of bent-core nematic liquid crystals doped with a chiral material. J. Mater. Chem. 20, 5893–5898 (2010)

    Google Scholar 

  15. M. Lee, S.-T. Hur, H. Higuchi, et al., Liquid crystalline blue phase I observed for a bent-core molecule and its electro-optical performance. J. Mater. Chem. 20, 5813–5816 (2010)

    Google Scholar 

  16. H. Wang, Z. Zheng, D. Shen, Blue phase liquid crystals induced by bent-shaped molecules based on 1,3,4-oxadiazole derivatives. Liq. Cryst. 39, 99–103 (2012)

    Google Scholar 

  17. K.-W. Park, M.-J. Gim, S. Kim, et al., Liquid-crystalline blue phase II system comprising a bent-core molecule with a wide stable temperature range. Appl. Mater. Interfaces 5, 8025–8029 (2013)

    Google Scholar 

  18. Z. Zheng, D. Shen, P. Huang, Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules. New J. Phys. 10, 113018–1-10 (2010)

    Google Scholar 

  19. A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, J. Yamamoto, A binaphthyl derivative with a wide temperature range of a blue phase. J. Mater. Chem. 19, 5759–5764 (2009)

    Google Scholar 

  20. X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang, W. He, H. Yang, H. Yang, Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chem. Commun. 49(86), 10097–10099 (2013)

    Google Scholar 

  21. A. Hauser, M. Thieme, A. Saupe, G. Heppke, D. Krüerke, Surface-imaging of frozen blue phases in a discotic liquid crystal with atomic force microscopy. J. Mater. Chem. 7(11), 2223–2229 (1997)

    Google Scholar 

  22. P. Lin, Q. Yan, Z. Wei, et al., All-inorganic perovskite quantum dots stabilized blue phase liquid crystals. Optics express 26(14), 18310–18319 (2018)

    ADS  Google Scholar 

  23. W. Zhang, X. Wang, D. Wang, Z. Yang, H. Gao, Y. Xing, W. He, H. Cao, H. Yang, Blue phase liquid crystals affected by graphene oxide modified with aminoazobenzol group. Liq. Cryst. 43(5), 573–580 (2016)

    Google Scholar 

  24. Y. Zhao, X.X. Qiao, K. Li, et al., Blue phase liquid crystals stabilized by graphene oxide modified with aminoalkyl group. Molecular Crystals and Liquid Crystals 664(1), 1–8 (2018)

    Google Scholar 

  25. J. Yan, S.-T. Wu, Polymer-stabilized blue phase liquid crystals: A tutorial [invited]. Opt. Mater. Express 1, 1527–1535 (2011)

    ADS  Google Scholar 

  26. Y.Y. Chen, S.-T. Wu, Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J. Appl. Polym. Sci. 131, 40556 (2014)

    Google Scholar 

  27. L. Rao, Z. Ge, S.-T. Wu, et al., Low voltage blue-phase liquid crystal displays. Appl. Phys. Lett. 95, 231101 (2009)

    ADS  Google Scholar 

  28. J. Yan, L. Rao, M. Jiao, Y. Li, H.C. Cheng, S.T. Wu, Polymer-stabilized optically isotropic liquid crystals for next generation display and photonics applications. J. Mater. Chem. 21, 7870–7877 (2011)

    Google Scholar 

  29. Z. Ge, S. Gauza, M. Jiao, et al., Electro-optics of polymer-stabilized blue phase liquid crystal displays. Appl. Phys. Lett. 94(10), 101104 (2009)

    ADS  Google Scholar 

  30. Z. Ge, L. Rao, S. Gauza, et al., Modeling of blue phase liquid crystal displays. J. Disp. Technol. 5, 250–256 (2009)

    ADS  Google Scholar 

  31. L. Rao, Z. Ge, S. Gauza, et al., Emerging liquid crystal displays based on the Kerr effect. Mol. Cryst. Liq. Cryst. 527, 30–42 (2010)

    Google Scholar 

  32. K.-M. Chen, S. Gauza, H. Xianyu, et al., Hysteresis effects in blue phase liquid crystals. J. Disp. Technol. 6, 318–322 (2010)

    ADS  Google Scholar 

  33. J.L. Zhu, S.B. Ni, Y. Su, et al., The influence of polymer system on polymer-stabilised blue phase liquid crystals. Liq. Cryst. 41, 891–896 (2014)

    Google Scholar 

  34. J.L. Zhu, S.B. Ni, Y. Song, et al., Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent. Appl. Phys. Lett. 102, 071104 (2013)

    ADS  Google Scholar 

  35. T.-N. Oo, T. Mizunuma, Y. Nagano, et al., Effects of monomer/liquid crystal compositions on electro-optical properties of polymer-stabilized blue phase liquid crystal. Opt. Mat. Express 1, 1502–1510 (2011)

    ADS  Google Scholar 

  36. J. Yan, Y. Chen, S.-T. Wu, et al., Dynamic response of a polymer-stabilized blue-phase liquid crystal. J. Appl. Phys. 111, 063103 (2012)

    ADS  Google Scholar 

  37. H. Kikuchi, Y. Hisakado, K. Uchida, et al., Fast electro-optical effect in polymer-stabilized blue phases. Proc. SPIE 5518, 182–189 (2004)

    ADS  Google Scholar 

  38. H. Yoshida, H. Kikuchi, T. Nagamura, et al., Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005)

    Google Scholar 

  39. J. Xiang, O.D. Lavrentovich, Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching. Appl. Phys. Lett. 103, 051112–1-4 (2013)

    Google Scholar 

  40. H. Choi, H. Higuchi, H. Kikuchi, Electro-optic response of liquid crystalline blue phases with different chiral pitches. Soft Matter 7, 4252–4256 (2011)

    ADS  Google Scholar 

  41. K.M. Chen, S. Gauza, S.-T. Wu, et al., Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. J. Disp. Technol. 6, 49–51 (2010)

    ADS  Google Scholar 

  42. P.J. Hsieh, H.M. Chen, Hysteresis-free polymer-stabilised blue phase liquid crystals comprising low surface tension monomers. Liq. Cryst. 42(2), 216–221 (2015)

    Google Scholar 

  43. L. Gao, X. Li, X.W. Du, W.M. Han, C.Y. Chen, J.L. Zhu, Y.J. Zhang, Y.B. Sun, High dielectric polymer and its application on electro-optical Kerr effect of blue phase liquid crystal. Appl. Phys. Lett. 113(22), 221907 (2018)

    Google Scholar 

  44. L. Rao, J. Yan, S.-T. Wu, et al., A large Kerr constant polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 98, 081109 (2011)

    ADS  Google Scholar 

  45. Y. Chen, D. Xu, S.-T. Wu, S.T. Wu, S.I. Yamamoto, Y. Haseba, A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 102, 141116 (2013)

    ADS  Google Scholar 

  46. D. Xu, J. Yan, J. Yuan, F. Peng, Y. Chen, S.T. Wu, Electro-optic response of polymer-stabilized blue phase liquid crystals. Appl. Phys. Lett. 105, 011119 (2014)

    ADS  Google Scholar 

  47. J. Yan, S.-T. Wu, Effect of polymer concentration and composition on blue phase liquid crystals. J. Display Tech. 7, 490–493 (2011)

    ADS  Google Scholar 

  48. J. Li, W. Du, A. Gao, et al., Enlarging the Kerr constant of polymer-stabilised blue phases with a novel chiral monomer. Liq. Cryst. 43(7), 937–943 (2016)

    Google Scholar 

  49. Y. Li, Y. Chen, J. Sun, et al., Dielectric Dispersion on the Kerr Constant of Blue Phase Liquid Crystals. Appl. Phys. Lett. 99(18), 181126 (2011)

    ADS  Google Scholar 

  50. M. Jiao, Y. Jin, S.-T. Wu, Dispersion Relation on the Kerr Constant of a Polymer-Stabilized Optically Isotropic Liquid Crystal. Phys. Rev. E 83(4), 041706 (2011)

    ADS  Google Scholar 

  51. F. Peng, Y. Chen, J. Yuan, H. Chen, S.T. Wu, Y. Haseba, Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy. J. Mater. Chem. C 2, 3597–3601 (2014)

    Google Scholar 

  52. K. Kishikawa, T. Watanabe, M. Kohri, T. Taniguchi, M. Takahashi, S. Kohmoto, Effect of the number of chiral mesogenic units and their spatial arrangement in dopant molecules on the stabilisation of blue phases. Liq. Cryst. 41(6), 839–849 (2014)

    Google Scholar 

  53. A.C. Pawsey, P.S. Clegg, Colloidal particles in blue phase liquid crystals. Soft Mater. 11, 3304–3312 (2015)

    ADS  Google Scholar 

  54. H.Y. Chen, H.H. Liu, J.L. Lai, C.H. Chiu, J.Y. Chou, Relation between physical parameters and thermal stability of liquid-crystal blue phase. Appl. Phys. Lett. 97, 181919 (2010)

    ADS  Google Scholar 

  55. J. Yan, H.C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.T. Wu, Extended Kerr effect of polymer-stabilized blue-phase liquid crystals. Appl. Phys. Lett. 96, 071105 (2010)

    ADS  Google Scholar 

  56. P.R. Gerber, Electro-optical effects of a small-pitch blue-phase system. Mol. Cryst. Liq. Cryst. 116, 197–206 (1985)

    Google Scholar 

  57. R. Manda, M.S. Kim, E.J. Shin, et al., Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive. Liq. Cryst. 44(6), 1059–1068 (2017)

    Google Scholar 

  58. N. Avci, The influence of diluter system on polymer-stabilised blue-phase liquid crystals. Liq. Cryst. 45(3), 459–467 (2018)

    Google Scholar 

  59. L.L. Tian, F. Chu, H. Dou, X. Zhou, Q.H. Wang, A transflective polymer-stabilised blue-phase liquid display with partitioned wall-shaped electrodes. Liq. Cryst. 45(8), 1259–1263 (2018)

    Google Scholar 

  60. D.P. Zhu, B.H. Chen, Z. Chen, et al., Low-voltage polymer-stabilised blue-phase liquid crystals with oleic acid (OA)-modified LaF3 nanoparticles. Liq. Cryst. 45(11), 1654–1660 (2018)

    Google Scholar 

  61. B.H. Chen, D.P. Zhu, F.Y. Huo, et al., Influence of Monomer Structure on the Properties of Blue Phase Liquid Crystal. Liquid Cryst. 45(11), 1637–1643 (2018)

    Google Scholar 

  62. E. Hecht, Optics (Addison Wesley, Reading, MA, 2002), pp. 318–320

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Scientific and Technological Research Council of Turkey (TUBITAK) to N. Avci.

Funding

This research was supported by grants from the Scientific and Technological Research Council of Turkey (TUBITAK) to N. Avci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejmettin Avci.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Li, J. & Avci, N. Effect of a Trifluorophenyl-Based Monomer on the Electro-optic Performances of Polymer-Stabilized Blue Phase Liquid Crystals. Braz J Phys 50, 687–698 (2020). https://doi.org/10.1007/s13538-020-00792-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00792-5

Keywords

Navigation