Skip to main content
Log in

Quantum Interference Effects for the Electronic Fluctuations in Quantum Dots

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K. Ensslin, D.C. Driscoll, A.C. Gossard, Surface Science Reports. 64, 191 (2009)

    Article  ADS  Google Scholar 

  2. S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett.96, 076605 (2006)

    Article  ADS  Google Scholar 

  3. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  4. Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)

    Article  ADS  Google Scholar 

  5. P.A.Mello, N. Kumar, Quantum Transport in Mesoscopic Systems (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  6. C.H. Lewenkopf, H.A. Weidenmüller, Ann. Phys. (N.Y.) 212, 53 (1991)

    Article  ADS  MATH  Google Scholar 

  7. E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge , 2006)

    Google Scholar 

  8. M.L. Mehta, Random Matrices, 3rd Edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  9. S. Hikami, A.I. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)

    Article  ADS  Google Scholar 

  10. A.V. Khaetskii, Yu.V. Nazarov, Phys. Rev. B 61, 012639 (2000)

    Article  Google Scholar 

  11. J.G.G.S. Ramos, A.L.R. Barbosa, A.M.S. Macêdo, Phys. Rev. B 84, 035453 (2011)

    Article  ADS  Google Scholar 

  12. J.A. Folk, S.R. Patel, K.M. Birnbaum, M. Marcus, C.I. Duruöz, J.S Harris Jr., Phys. Rev. Lett. 86, 2102 (2001)

    Article  ADS  Google Scholar 

  13. B.I. Halperin, A. Stern, Y. Oreg, J.N.H.J. Cremers, J.A. Folk, C.M. Marcus, Phys. Rev. Lett., Vol. 86 (2001)

  14. I.L. Aleiner, V.I. Falko, Phys. Rev. Lett. 87, 256801 (2001)

    Article  ADS  Google Scholar 

  15. J.N.H.J. Cremers, P.W. Brouwer, V.I. Fal’ko, Phys. Rev. B 68, 125329 (2003)

    Article  ADS  Google Scholar 

  16. Ya.M.. Blanter, M. Bu¨ttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  17. P.A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations ( Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  18. M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990)

    Article  ADS  Google Scholar 

  19. V. A.l. Osipov, E. Kanzieper, J. Phys. A: Math. Theor. 42, 475101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.L. Polianski, P.W. Brouwer, J. Phys. A: Math. Gen. 36, 3215 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. P.W. Brouwer, C.W.J. Beenakker, J. Math. Phys. 37, 4904 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J.G.G.S. Ramos, A.L.R. Barbosa, A.M.S. Macêdo, Phys. Rev. B 78, 235305 (2008)

    Article  ADS  Google Scholar 

  23. A.L.R. Barbosa, J.G.G.S. Ramos, A.M.S. Macêdo, J. Phys. A 43, 075101 (2010)

    Article  ADS  Google Scholar 

  24. B. Béri, J. Cserti, Phys. Rev. B 74, 235314 (2006); B. Béri, J. Cserti, Phys. Rev. B 75, 041308(R) (2007)

    Google Scholar 

  25. A.L.R. Barbosa, J.G.G.S. Ramos, D. Bazeia, Eurphys. Lett. 93, 67003 (2011)

    Article  ADS  Google Scholar 

  26. A.L.R. Barbosa, J.G.G.S. Ramos, D. Bazeia, Phys. Rev. B 84, 115312 (2011)

    Article  ADS  Google Scholar 

  27. S. Gustavsson, R. Leturcq, T. Ihn, K. Ensslin, M. Reinwald, W. Wegscheider, Phys. Rev. B Vol. 75 (2007)

  28. Yu. Bomze, G. Gershon, D. Shovkun, L.S. Levitov, M. Reznikov, Phys. Rev. Lett. 95, 176601 (2005)

    Article  ADS  Google Scholar 

  29. J.G.G.S. Ramos, A.L.R. Barbosa, D. Bazeia, M.S. Hussein, C.H. Lewenkopf, Phys. Rev. B Vol. 86 (2012)

  30. J.G.G.S. Ramos, D. Bazeia, M.S. Hussein, C.H. Lewenkopf, Phys. Rev. Lett. 107, 176807 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CNPq, FAPESP, FACEPE, and INCT-IQ (Brazilian Agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, J.G.G.S., Barbosa, A.L.R. & Hussein, M.S. Quantum Interference Effects for the Electronic Fluctuations in Quantum Dots. Braz J Phys 44, 223–232 (2014). https://doi.org/10.1007/s13538-014-0181-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-014-0181-2

Keywords

Navigation