Skip to main content
Log in

Elementary Excitations of a Higgs–Yukawa System

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This work investigates the physics of elementary excitations for the so-called relativistic quantum scalar plasma system, also known as the Higgs–Yukawa system. Following the Nemes–Piza–Kerman–Lin many-body procedure, the random-phase approximation (RPA) equations were obtained for this model by linearizing the time-dependent Hartree–Fock–Bogoliubov equations of motion around equilibrium. The resulting equations have a closed solution, from which the spectrum of excitation modes are studied. We show that the RPA oscillatory modes give the one-boson and two-fermion states of the theory. The results indicate the existence of bound states in certain regions in the phase diagram. Applying these results to recent Large Hadron Collider observations concerning the mass of the Higgs boson, we determine limits for the intensity of the coupling constant g of the Higgs–Yukawa model, in the RPA mean-field approximation, for three decay channels of the Higgs boson. Finally, we verify that, within our approximations, only Higgs bosons with masses larger than 190 GeV/\(c^2\) can decay into top quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Berges, Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3 (2004)

    Article  ADS  Google Scholar 

  2. M. Garny, A. Hohenegger, A. Kartavtsev, M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter. Phys. Rev. D 81, 085027 (2010)

    Article  ADS  Google Scholar 

  3. A. Chodos, F. Cooper, W. Mao, A. Singh, Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu model. Phys. Rev. D 63, 096010 (2001)

    Article  ADS  Google Scholar 

  4. B. Mohanty, J. Serreau, Disoriented chiral condensate: theory and experiment. Phys. Rep. 414, 263 (2005)

    Article  ADS  Google Scholar 

  5. R.L.S. Farias, N.C. Cassol-Seewald, G. Krein, R.O. Ramos, Nonequilibrium dynamics of quantum fields. Nucl. Phys. A 782, 33 (2007)

    Article  ADS  Google Scholar 

  6. C.Y. Lin, E.J.V. Passos, A.F.R. de Toledo Piza, D.S. Lee, M.S. Hussein, Bogoliubov theory for mutually coherent hybrid atomic molecular condensates: quasiparticles and superchemistry. Phys. Rev. A 73, 013615 (2006)

    Article  ADS  Google Scholar 

  7. S. Gopalakrishnan, B.L. Lev, P.M. Goldbart, Atom-light crystallization of BECs in multimode cavities: nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration. Phys. Rev. A 82, 043612 (2010)

    Article  ADS  Google Scholar 

  8. M. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, F.A. Wolf, New theoretical approaches for correlated systems in nonequilibrium. Eur. Phys. J. Special Topics 180, 217 (2010)

    Article  ADS  Google Scholar 

  9. E.R. Takano Natti, C.Y. Lin, A.F.R. de Toledo Piza, P.L. Natti, Initial-value problem in quantum field theory: an application to the relativistic scalar plasma. Phys. Rev. D 60, 125013 (1999)

    Article  ADS  Google Scholar 

  10. A.F.R. de Toledo Piza, in Lectures Notes in Physics, vol 171, ed. by K. Goeke , P.G. Reinhardt . Time-dependent Hartree-Fock and Beyond (Springer, Berlin, 1982)

    Google Scholar 

  11. M.C. Nemes, A.F.R. de Toledo Piza, Effective dynamics of quantum systems. Phys. A 137, 367 (1986)

    Article  Google Scholar 

  12. A. Kerman, C.Y. Lin, Time-dependent variational principle for \(\phi ^{4}\) field theory: 1. RPA approximation and renormalization. Ann. Phys. (N.Y.) 241, 185 (1995)

    Article  ADS  Google Scholar 

  13. A. Kerman, C.Y. Lin, Time-dependent variational principle for \(\phi ^{4}\) field theory: RPA approximation and renormalization (II). Ann. Phys. (N.Y.) 269, 55 (1998)

    Article  ADS  Google Scholar 

  14. F. Gianotti, CERN seminar: update on the Standard Model Higgs searches in ATLAS (2012). http://cdsweb.cern.ch/record/1460439/files/ATLAS-CONF-2012-093.pdf. Accessed 1 Apr 2013

  15. J. Incandela, CERN seminar: update on the Standard Model Higgs searches in CMS (2012). http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf. Accessed 1 Apr 2013

  16. D. Carmia, A. Falkowskib, E. Kuflik, T. Volanskya, J. Zupand, Higgs after the discovery: a status report (2012). http://arxiv.org/pdf/1207.1718.pdf. Accessed 1 Apr 2013

  17. P. Gerhold, K. Jansen, J. Kallarackal, The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice. Phys. Lett. B 710, 697–702 (2012)

    Article  ADS  Google Scholar 

  18. P. Gerhold, K. Jansen, J. Kallarackal, Higgs boson mass bounds in the presence of a very heavy fourth generation quark. J. High Energy Phys. 1101, article 143 (2011)

    Article  ADS  Google Scholar 

  19. G. Kalman, Equilibrium and linear response of a classical scalar plasma. Phys. Rev. 161, 156 (1967)

    Article  ADS  Google Scholar 

  20. G. Kalman, Relativistic fermion gas interacting through a scalar field. I. Hartree approximation. Phys. Rev. D 9, 1656 (1974)

    Article  ADS  Google Scholar 

  21. J.D. Walecka, A theory of highly condensed matter. Ann. Phys. (N.Y.) 83, 491 (1974)

    Article  ADS  Google Scholar 

  22. R. Hakim, Statistical-mechanics of relativistic dense matter. Riv. Nuovo Cim. 1, 1 (1978)

    Article  MathSciNet  Google Scholar 

  23. M.Wakamatsu, A. Hayashi, Phase-transition to abnormal nuclear-matter at finite temperature and finite barion density. Prog. Theor. Phys. 63, 1688 (1980)

    Article  ADS  Google Scholar 

  24. J.D. Alonso, R. Hakim, Quantum fluctuations of the relativistic scalar plasma in the Hartree-Vlasov approximation. Phys. Rev. D 29, 2690 (1984)

    Article  ADS  Google Scholar 

  25. J.D. Alonso, R. Hakim, Quasiboson excitation spectrum of the relativistic quantum scalar plasma in the Hartree-Vlasov approximation. Phys. Rev. D 38, 1780 (1988)

    Article  ADS  Google Scholar 

  26. J.D. Alonso, A.P. Canyellas, Field theoretical-model for nuclear and neutron matter. 5. Slowly rotating warm cores in neutron-stars. Astrophys. J. 395, 612 (1992)

    Article  ADS  Google Scholar 

  27. J. Baacke, K. Heitmann, C. Patzold, Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field. Phys. Rev. D 58, 125013 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Boyanovsky, H.J. Vega, D.S. Lee, Y.J. Ng, S.Y.Wang, Fermion damping in a fermion-scalar plasma. Phys. Rev. D 59, 105001 (1999)

    Article  ADS  Google Scholar 

  29. J. Baacke, D. Boyanovsky, H.J. Vega, Initial time singularities in nonequilibrium evolution of condensates and their resolution in the linearized approximation. Phys. Rev. D 63, 045023 (2001)

    Article  ADS  Google Scholar 

  30. O. Scavenius, Á. Mócsy, I.N. Mishustin, D.H. Rischke, Chiral phase transition within effective models with constituent quarks. Phys. Rev. C 64, 045202 (2001)

    Article  ADS  Google Scholar 

  31. J. Berges, S. Borsnyi, J. Serreau, Thermalization of fermionic quantum fields. Nucl. Phys. B 660, 5180 (2003)

    Article  Google Scholar 

  32. E.S. Fraga, L.F. Palhares, M.B. Pinto, Nonperturbative Yukawa theory at finite density and temperature. Phys. Rev. D 79, 065026 (2009)

    Article  ADS  Google Scholar 

  33. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

    Book  Google Scholar 

  34. P.L. Natti, A.F.R. de Toledo Piza, Initial-condition problem for a chiral Gross-Neveu system. Phys. Rev. D 54, 7867 (1996)

    Article  ADS  Google Scholar 

  35. C.R. Willis, R.H. Picard, Time-dependent projection-operator approach to master equations for coupled systems. Phys. Rev. A 9, 1343 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  36. L.C. Yong, A.F.R. de Toledo Piza, Kinetic approach to the initial-value problem in \(\phi ^{4}\) field theory. Phys. Rev. D 46, 742 (1992)

    Article  ADS  Google Scholar 

  37. J.M. Luttinger, J.C.Ward, Ground-state energy of a many-fermion system. II. Phys. Rev. 118, 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. G. Baym, Self-consistent approximations in many-body systems. Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. P. Buck, H. Feldmeier, M.C. Nemes, On energy conservation in the presence of collision terms. Ann. Phys. 185, 170 (1988)

    Article  ADS  Google Scholar 

  40. Y.B. Ivanov, J. Knoll, D.N. Voskresensky, Self-consistent approximations to non-equilibrium many-body theory. Nucl. Phys. A 657, 413 (1999)

    Article  ADS  Google Scholar 

  41. E.R. Takano Natti, A.F.R. de Toledo Piza, Mean field and collisional dynamics of interacting fermion-boson system: the Jaynes-Cummings model. Phys. A 236, 321 (1997)

    Article  Google Scholar 

  42. P. Tommasini, A.F.R. de Toledo Piza, Non-ideal boson system in the gaussian approximation. Ann. Phys. (N.Y.) 253, 198 (1997)

    Article  ADS  MATH  Google Scholar 

  43. A. Kerman, S.E. Koonin, Hamiltonian formulation of time-dependent principles for many-body system. Ann. Phys. (N.Y.) 100, 332 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. P.L. Natti, A.F.R. de Toledo Piza, Small oscillations of a chiral Gross-Neveu system. Phys. Rev. D 55, 3403 (1997)

    Article  ADS  Google Scholar 

  45. R. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982)

    MATH  Google Scholar 

  46. M.C. Nemes, A.F.R. de Toledo Piza, J. Providência, Van Kampen waves in extended fermion systems and the random phase approximation. Phys. A 146, 282 (1987)

    Article  Google Scholar 

  47. J. Beringer et al. (Particle Data Group), Review of particle physics. Phys. Rev. D 86, 010001 (2012) [1528 pages]

    Google Scholar 

  48. M.C. Nemes, A.F.R. de Toledo Piza, Nonunitary effects in the time evolution of one-body observables. Phys. Rev. C 27, 862 (1983)

    Article  ADS  Google Scholar 

  49. M.C. Nemes, A.F.R. de Toledo Piza, Dynamics of the nuclear one-body density: small amplitude regime. Phys. Rev. C 31, 613 (1985)

    Article  ADS  Google Scholar 

  50. B.V. Carlson, M.C. Nemes, A.F.R. de Toledo Piza, Quantum collisional evolution of a one-dimensional fermi gas: numerical solution. Nucl. Phys. A 457, 261 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author P. L. Natti thanks the State University of Londrina for the financial support received from the FAEPE programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Natti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano Natti, E.R., de Toledo Piza, A.F.R., Natti, P.L. et al. Elementary Excitations of a Higgs–Yukawa System. Braz J Phys 43, 172–181 (2013). https://doi.org/10.1007/s13538-013-0129-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0129-y

Keywords

Navigation