Skip to main content
Log in

Technologies for sleep monitoring at home: wearables and nearables

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Sleep is an essential part of our lives and daily sleep monitoring is crucial for maintaining good health and well-being. Traditionally, the gold standard method for sleep monitoring is polysomnography using various sensors attached to the body; however, it is limited with regards to long-term sleep monitoring in a home environment. Recent advancements in wearable and nearable technology have made it possible to monitor sleep at home. In this review paper, the technologies that are currently available for sleep stages and sleep disorder monitoring at home are reviewed using wearable and nearable devices. Wearables are devices that are worn on the body, while nearables are placed near the body. These devices can accurately monitor sleep stages and sleep disorder in a home environment. In this study, the benefits and limitations of each technology are discussed, along with their potential to improve sleep quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moorcroft WH. Understanding sleep and dreaming. New York: Springer US; 2013. ISBN 9781461464679.

    Book  Google Scholar 

  2. Cay G, Ravichandran V, Sadhu S, Zisk AH, Salisbury AL, Solanki D, Mankodiya K. Recent Advancement in Sleep Technologies: a Literature Review on Clinical Standards, sensors, apps, and AI methods. IEEE Access. 2022;10:104737–56. https://doi.org/10.1109/ACCESS.2022.3210518.

    Article  Google Scholar 

  3. Park KS, Choi SH. Smart Technologies toward Sleep Monitoring at Home. Biomed Eng Lett. 2019;9:73–85. https://doi.org/10.1007/s13534-018-0091-2.

    Article  Google Scholar 

  4. Sadeh A. The role and validity of actigraphy in Sleep Medicine: an update. Sleep Med Rev. 2011;15:259–67.

    Article  Google Scholar 

  5. Zou D, Grote L, Peker Y, Lindblad U, Hedner J. Validation a portable monitoring device for Sleep Apnea diagnosis in a Population Based Cohort using synchronized Home Polysomnography. Sleep. 2006;29:367–74. https://doi.org/10.1093/sleep/29.3.367.

    Article  Google Scholar 

  6. Carskadon MA, Dement WC. Normal human sleep : An Overview.

  7. Rosenberg RS, Van Hout S. The American Academy of Sleep Medicine Inter-Scorer Reliability Program: respiratory events. J Clin Sleep Med. 2014;10:447–54. https://doi.org/10.5664/jcsm.3630.

    Article  Google Scholar 

  8. Harper RM, Verrier RL. Cardiovascular Physiology and coupling with respiration: Central and Autonomic Regulation. Princ Pract Sleep Med. 2017;6th Ed:132–41.

    Article  Google Scholar 

  9. Lanfranchi PA, Somers VK. Cardiovascular Physiology: Autonomic Control in Health and in Sleep Disorders. 2010.

  10. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28. https://doi.org/10.1088/0967-3334/28/3/R01.

  11. Yasuma F, Hayano JI. Respiratory sinus arrhythmia: why does the Heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–90. https://doi.org/10.1378/chest.125.2.683.

    Article  Google Scholar 

  12. Bergström RM. Physiology of the autonomic nervous system. Acta Anaesthesiol Scand. 1964;8:17–20. https://doi.org/10.1111/j.1399-6576.1964.tb00252.x.

    Article  Google Scholar 

  13. Electrophysiology TF, of the, E.S. Of C. the N.A. Heart Rate Variability: Standards of Measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65. https://doi.org/10.1161/01.CIR.93.5.1043.

    Article  Google Scholar 

  14. Penzel T, Kantelhardt JW, Grote L, Peter J, Bunde A. Comparison of detrended fluctuation analysis and spectral analysis for Heart Rate Variability in Sleep and Sleep Apnea. IEEE Trans Biomed Eng. 2003;50:1143–51. https://doi.org/10.1109/TBME.2003.817636.

    Article  Google Scholar 

  15. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003;26:342–92. https://doi.org/10.1093/sleep/26.3.342.

    Article  Google Scholar 

  16. Fischer D, Klerman EB, Phillips AJK. Measuring sleep regularity: theoretical Properties and practical usage of existing Metrics. Sleep. 2021;44. https://doi.org/10.1093/sleep/zsab103.

  17. Phillips AJK, Clerx WM, O’Brien CS, Sano A, Barger LK, Picard RW, Lockley SW, Klerman EB, Czeisler CA. Irregular Sleep/Wake patterns are Associated with poorer academic performance and delayed circadian and Sleep/Wake timing. Sci Rep. 2017;7:3216. https://doi.org/10.1038/s41598-017-03171-4.

    Article  Google Scholar 

  18. Herscovici S, Pe’er A, Papyan S, Lavie P. Detecting REM sleep from the Finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy. Physiol Meas. 2007;28:129–40. https://doi.org/10.1088/0967-3334/28/2/002.

    Article  Google Scholar 

  19. Lavie P, Schnall RP, Sheffy J, Shlitner A. Peripheral vasoconstriction during REM sleep detected by a New Plethysmographic Method. Nat Med. 2000;6:606–6. https://doi.org/10.1038/76135.

    Article  Google Scholar 

  20. Yoon H, Hwang S, Jung D, Choi S, Joo K, Choi J, Lee Y, Jeong D-U. Kwangsuk Park. Estimation of Sleep Posture Using a Patch-Type Accelerometer Based Device. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE, August 2015:4942–4945.

  21. Arnal PJ, Thorey V, Debellemaniere E, Ballard ME, Bou Hernandez A, Guillot A, Jourde H, Harris M, Guillard M, Van Beers P, et al. The Dreem Headband compared to Polysomnography for Electroencephalographic Signal Acquisition and Sleep Staging. Sleep. 2020;43. https://doi.org/10.1093/sleep/zsaa097.

  22. Hussain I, Hossain MA, Jany R, Bari MA, Uddin M, Kamal ARM, Ku Y, Kim JS. Quantitative evaluation of EEG-Biomarkers for prediction of sleep stages. Sensors. 2022;22:3079. https://doi.org/10.3390/s22083079.

    Article  Google Scholar 

  23. Vilamala A, Madsen KH, Hansen LK. Deep Convolutional Neural Networks for Interpretable Analysis of EEG Sleep Stage Scoring. In Proceedings of the 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP); IEEE, September 2017:1–6.

  24. Mousavi S, Afghah F, Acharya UR. SleepEEGNet: Automated Sleep Stage Scoring with sequence to sequence Deep Learning Approach. PLoS ONE. 2019;14:e0216456. https://doi.org/10.1371/journal.pone.0216456.

    Article  Google Scholar 

  25. Supratak A, Dong H, Wu C, Guo Y, DeepSleepNet:. A model for Automatic Sleep Stage Scoring based on raw Single-Channel EEG. IEEE Trans Neural Syst Rehabil Eng. 2017;25:1998–2008. https://doi.org/10.1109/TNSRE.2017.2721116.

    Article  Google Scholar 

  26. Michielli N, Acharya UR, Molinari F. Cascaded LSTM recurrent neural network for automated sleep stage classification using Single-Channel EEG signals. Comput Biol Med. 2019;106:71–81. https://doi.org/10.1016/j.compbiomed.2019.01.013.

    Article  Google Scholar 

  27. Nakamura T, Alqurashi YD, Morrell MJ, Mandic DP. Hearables: Automatic overnight sleep monitoring with standardized In-Ear EEG sensor. IEEE Trans Biomed Eng. 2020;67:203–12. https://doi.org/10.1109/TBME.2019.2911423.

    Article  Google Scholar 

  28. Mikkelsen KB, Tabar YR, Kappel SL, Christensen CB, Toft HO, Hemmsen MC, Rank ML, Otto M, Kidmose P. Accurate whole-night sleep monitoring with dry-contact Ear-EEG. Sci Rep. 2019;9:16824. https://doi.org/10.1038/s41598-019-53115-3.

    Article  Google Scholar 

  29. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM, Solet JM, Dulin H, Berkman LF, Buxton OM. Measuring sleep: Accuracy, Sensitivity, and specificity of wrist actigraphy compared to Polysomnography. Sleep. 2013;36:1747–55. https://doi.org/10.5665/sleep.3142.

    Article  Google Scholar 

  30. Hedner J, Pillar G, Pittman SD, Zou D, Grote L, White DP. A novel adaptive wrist actigraphy algorithm for Sleep-Wake Assessment in Sleep Apnea Patients. Sleep. 2004;27:1560–6. https://doi.org/10.1093/sleep/27.8.1560.

    Article  Google Scholar 

  31. Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, Long X, Aarts RM. A deep transfer Learning Approach for Wearable Sleep Stage classification with Photoplethysmography. npj Digit Med. 2021;4:135. https://doi.org/10.1038/s41746-021-00510-8.

    Article  Google Scholar 

  32. Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, Long X, Aarts RM. Sleep stage classification from Heart-Rate Variability using long short-term memory neural networks. Sci Rep. 2019;9:14149. https://doi.org/10.1038/s41598-019-49703-y.

    Article  Google Scholar 

  33. Wei Y, Qi X, Wang H, Liu Z, Wang G, Yan XA, Multi-Class. Automatic sleep staging Method based on long short-term Memory Network using single-lead electrocardiogram signals. IEEE Access. 2019;7:85959–70. https://doi.org/10.1109/ACCESS.2019.2924980.

    Article  Google Scholar 

  34. Sridhar N, Shoeb A, Stephens P, Kharbouch A, Shimol D, Ben Burkart J, Ghoreyshi A, Myers L. Deep learning for automated sleep staging using Instantaneous Heart Rate. npj Digit. Med. 2020;3:106. https://doi.org/10.1038/s41746-020-0291-x.

    Article  Google Scholar 

  35. Fonseca P, Weysen T, Goelema MS, Møst EIS, Radha M, Lunsingh Scheurleer C, van den Heuvel L, Aarts RM. Validation of Photoplethysmography-Based sleep staging compared with polysomnography in healthy middle-aged adults. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsx097.

  36. Korkalainen H, Aakko J, Duce B, Kainulainen S, Leino A, Nikkonen S, Afara IO, Myllymaa S, Töyräs J, Leppänen T. Deep learning enables sleep staging from Photoplethysmogram for patients with suspected sleep apnea. Sleep. 2020;43. https://doi.org/10.1093/sleep/zsaa098.

  37. Walch O, Huang Y, Forger D, Goldstein C. Sleep. 2019;42. https://doi.org/10.1093/sleep/zsz180. Sleep Stage Prediction with Raw Acceleration and Photoplethysmography Heart Rate Data Derived from a Consumer Wearable Device.

  38. Hedner J, White DP, Malhotra A, Herscovici S, Pittman SD, Zou D, Grote L, Pillar G. Sleep staging based on autonomic signals: a Multi-Center Validation Study. J Clin Sleep Med. 2011;07:301–6. https://doi.org/10.5664/JCSM.1078.

    Article  Google Scholar 

  39. Choi SH, Yoon H. Convolutional neural networks for the real-time monitoring of vital Signs based on Impulse Radio Ultrawide-Band Radar during Sleep. Sensors. 2023;23:3116. https://doi.org/10.3390/s23063116.

    Article  Google Scholar 

  40. Rahman T, Adams AT, Ravichandran RV, Zhang M, Patel SN, Kientz JA, Choudhury T, DoppleSleep:. A Contactless Unobtrusive Sleep Sensing System Using Short-Range Doppler Radar. In Proceedings of the Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; ACM: New York, NY, USA, September 7 2015:39–50.

  41. Doheny EP, O’Callaghan BPF, Fahed VS, Liegey J, Goulding C, Ryan S, Lowery MM. Estimation of respiratory rate and Exhale Duration using Audio signals recorded by Smartphone Microphones. Biomed Signal Process Control. 2023;80:104318. https://doi.org/10.1016/j.bspc.2022.104318.

    Article  Google Scholar 

  42. Nam Y, Reyes BA, Chon KH. Estimation of respiratory rates using the built-in microphone of a smartphone or headset. IEEE J Biomed Heal Informatics. 2016;20:1493–501. https://doi.org/10.1109/JBHI.2015.2480838.

    Article  Google Scholar 

  43. Le VL, Kim D, Cho E, Jang H, Reyes RD, Kim H, Lee D, Yoon IY, Hong J, Kim JW. Real-time detection of Sleep Apnea based on Breathing sounds and prediction reinforcement using home noises: Algorithm Development and Validation. J Med Internet Res. 2023;25:e44818. https://doi.org/10.2196/44818.

    Article  Google Scholar 

  44. Tamura T, Chen W. Seamless Healthcare Monitoring: Advancements in Wearable, Attachable, and Invisible Devices. Seamless Healthc. Monit. Adv. Wearable, Attach. Invis. Devices 2017.

  45. Kwon HB, Choi SH, Lee D, Son D, Yoon H, Lee MH, Lee YJ, Park KS. Attention-based LSTM for non-contact sleep stage classification using IR-UWB radar. IEEE J Biomed Heal Informatics. 2021;25:3844–53. https://doi.org/10.1109/JBHI.2021.3072644.

    Article  Google Scholar 

  46. Hong H, Zhang L, Gu C, Li Y, Zhou G, Zhu X. Noncontact Sleep Stage Estimation using a CW Doppler Radar. IEEE J Emerg Sel Top Circuits Syst. 2018;8:260–70. https://doi.org/10.1109/JETCAS.2017.2789278.

    Article  Google Scholar 

  47. Zhao M, Yue S, Katabi D, Jaakkola TS, Bianchi MT. Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture. 34th Int. Conf. Mach. Learn. ICML 2017 2017;8:6205–6214.

  48. Toften S, Pallesen S, Hrozanova M, Moen F, Grønli J. Validation of Sleep Stage classification using Non-Contact Radar Technology and Machine Learning (Somnofy®). Sleep Med. 2020;75:54–61. https://doi.org/10.1016/j.sleep.2020.02.022.

    Article  Google Scholar 

  49. Zaffaroni A, Doheny EP, Gahan L, Ivanov Y, Kilroy H, O’Mahony N, O’Rourke D. Non-Contact Estimation of Sleep Staging. 2018:77–80.

  50. Dafna E, Tarasiuk A, Zigel Y. Sleep staging using Nocturnal Sound Analysis. Sci Rep. 2018;8:13474. https://doi.org/10.1038/s41598-018-31748-0.

    Article  Google Scholar 

  51. Hong J, Tran HH, Jung J, Jang H, Lee D, Yoon IY, Hong JK, Kim JW. End-to-end sleep staging using Nocturnal sounds from Microphone chips for Mobile Devices. Nat Sci Sleep. 2022;14:1187–201. https://doi.org/10.2147/NSS.S361270.

    Article  Google Scholar 

  52. Choi SH, Kwon HB, Jin HW, Yoon H, Lee MH, Lee YJ, Park KS. Long short-term memory networks for unconstrained sleep stage classification using Polyvinylidene Fluoride Film Sensor. IEEE J Biomed Heal Informatics. 2020;24:3606–15. https://doi.org/10.1109/JBHI.2020.2979168.

    Article  Google Scholar 

  53. Siyahjani F, Garcia Molina G, Barr S, Mushtaq F. Performance evaluation of a Smart Bed Technology against Polysomnography. Sensors. 2022;22:2605. https://doi.org/10.3390/s22072605.

    Article  Google Scholar 

  54. Hwang S, Lee Y, Jeong D, Park K. Unconstrained sleep stage estimation based on Respiratory Dynamics and Body Movement. Methods Inf Med. 2016;55:545–55. https://doi.org/10.3414/ME15-01-0140.

    Article  Google Scholar 

  55. Ding F, Cotton-Clay A, Fava L, Easwar V, Kinsolving A, Kahn P, Rama A, Kushida C. Polysomnographic validation of an Under-Mattress monitoring device in estimating Sleep Architecture and Obstructive Sleep Apnea in adults. Sleep Med. 2022;96:20–7. https://doi.org/10.1016/j.sleep.2022.04.010.

    Article  Google Scholar 

  56. Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to Polysomnography. J Clin Sleep Med. 2017;13:517–22. https://doi.org/10.5664/jcsm.6514.

    Article  Google Scholar 

  57. Pavlova K, Latreille M, Sleep Disorders V. Am J Med. 2019;132:292–9. https://doi.org/10.1016/j.amjmed.2018.09.021.

    Article  Google Scholar 

  58. Laval U, City Q, Morin CM, Benca R. Chronic insomnia. Lancet. 2012;379:1129–70. https://doi.org/10.1016/S0140.

    Article  Google Scholar 

  59. Punjabi NM. The Epidemiology of Adult Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008;5:136–143.

  60. Yeo M, Byun H, Lee J, Byun J, Rhee HY, Shin W, Yoon H. Respiratory event detection during Sleep using Electrocardiogram and Respiratory related signals: using Polysomnogram and Patch-Type Wearable device data. IEEE J Biomed Heal Informatics. 2021. https://doi.org/10.1109/JBHI.2021.3098312.

    Article  Google Scholar 

  61. Yeo M, Byun H, Lee J, Byun J, Rhee HY, Shin W, Yoon H. Robust method for screening sleep apnea with single-lead ECG using deep residual network: evaluation with Open Database and Patch-Type Wearable device data. IEEE J Biomed Heal Informatics. 2022;26:5428–38. https://doi.org/10.1109/JBHI.2022.3203560.

    Article  Google Scholar 

  62. Hsu YS, Chen TY, Wu D, Lin CM, Juang JN, Liu W. Te Screening of Obstructive Sleep Apnea in Patients who snore using a Patch-Type device with Electrocardiogram and 3-Axis Accelerometer. J Clin Sleep Med. 2020;16:1149–60. https://doi.org/10.5664/jcsm.8462.

    Article  Google Scholar 

  63. Chang HC, Wu HT, Huang PC, Ma HP, Lo YL, Huang YH. Portable sleep apnea syndrome screening and event detection using long short-term memory recurrent neural network. Sensors. 2020;20:1–17. https://doi.org/10.3390/s20216067.

    Article  Google Scholar 

  64. Ng SSS, Chan TO, To KW, Ngai J, Tung A, Ko FWS, Hui DSC. Validation of a Portable Recording device (ApneaLink) for identifying patients with suspected obstructive sleep Apnoea Syndrome. Intern Med J. 2009;39:757–62. https://doi.org/10.1111/j.1445-5994.2008.01827.x.

    Article  Google Scholar 

  65. Lin YY, Wu HT, Hsu CA, Huang PC, Huang YH, Lo YL. Sleep apnea detection based on thoracic and Abdominal Movement signals of wearable Piezoelectric bands. IEEE J Biomed Heal Informatics. 2017;21:1533–45. https://doi.org/10.1109/JBHI.2016.2636778.

    Article  Google Scholar 

  66. Van Steenkiste T, Groenendaal W, Dreesen P, Lee S, Klerkx S, De Francisco R, Deschrijver D, Dhaene T. Portable detection of apnea and hypopnea events using Bio-Impedance of the chest and deep learning. IEEE J Biomed Heal Informatics. 2020;24:2589–98. https://doi.org/10.1109/JBHI.2020.2967872.

    Article  Google Scholar 

  67. Choi JH, Lee B, Lee JY, Kim HJ. Validating the Watch-PAT for diagnosing obstructive sleep apnea in adolescents. J Clin Sleep Med. 2018;14:1741–7. https://doi.org/10.5664/jcsm.7386.

    Article  Google Scholar 

  68. Papini GB, Fonseca P, van Gilst MM, Bergmans JWM, Vullings R, Overeem S. Wearable monitoring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography. Sci Rep. 2020;10:1–15. https://doi.org/10.1038/s41598-020-69935-7.

    Article  Google Scholar 

  69. Chen Y, Wang W, Guo Y, Zhang H, Chen Y, Xie L. A single-center validation of the Accuracy of a photoplethysmography-based Smartwatch for Screening Obstructive Sleep Apnea. Nat Sci Sleep. 2021;13:1533–44. https://doi.org/10.2147/NSS.S323286.

    Article  Google Scholar 

  70. Gu W, Leung L, Kwok KC, Wu IC, Folz RJ, Chiang AA. Belun Ring platform: a Novel Home Sleep Apnea Testing System for Assessment of Obstructive Sleep Apnea. J Clin Sleep Med. 2020;16:1611–7. https://doi.org/10.5664/jcsm.8592.

    Article  Google Scholar 

  71. Zhao R, Xue J, Zhang X, Peng M, Li J, Zhou B, Zhao L, Penzel T, Kryger M, Dong XS, et al. Comparison of Ring Pulse Oximetry using reflective photoplethysmography and PSG in the detection of OSA in chinese adults: a pilot study. Nat Sci Sleep. 2022;14:1427–36. https://doi.org/10.2147/NSS.S367400.

    Article  Google Scholar 

  72. Kwon HB, Son D, Lee D, Yoon H, Lee MH, Lee YJ, Choi SH, Park KS, Choi SH. Hybrid CNN-LSTM Network for Real-Time apnea-hypopnea event detection based on IR-UWB radar. IEEE Access. 2022;10:17556–64. https://doi.org/10.1109/ACCESS.2021.3081747.

    Article  Google Scholar 

  73. Zhou Y, Shu D, Xu H, Qiu Y, Zhou P, Ruan W, Qin G, Jin J, Zhu H, Ying K, et al. Validation of Novel Automatic Ultra-Wideband Radar for Sleep Apnea Detection. J Thorac Dis. 2020;12:1286–95. https://doi.org/10.21037/jtd.2020.02.59.

    Article  Google Scholar 

  74. Kang S, Kim DK, Lee Y, Lim YH, Park HK, Cho SH, Cho SH. Non-contact diagnosis of obstructive sleep apnea using impulse-radio Ultra-Wideband Radar. Sci Rep. 2020;10. https://doi.org/10.1038/s41598-020-62061-4.

  75. Baboli M, Singh A, Soll B, Boric-Lubecke O, Lubecke VM. Wireless Sleep Apnea Detection using continuous Wave Quadrature Doppler Radar. IEEE Sens J. 2020;20:538–45. https://doi.org/10.1109/JSEN.2019.2941198.

    Article  Google Scholar 

  76. Zhuang Z, Wang F, Yang X, Zhang L, Fu CH, Xu J, Li C, Hong H. Accurate Contactless Sleep Apnea Detection Framework with Signal Processing and Machine Learning Methods. Methods. 2022;205:167–78. https://doi.org/10.1016/j.ymeth.2022.06.013.

    Article  Google Scholar 

  77. Choi JW, Kim DH, Koo DL, Park Y, Nam H, Lee JH, Kim HJ, Hong SN, Jang G, Lim S, et al. Automated detection of Sleep Apnea-Hypopnea events based on 60 GHz frequency-modulated Continuous-Wave Radar using Convolutional recurrent neural networks: a preliminary Report of a prospective cohort study. Sensors. 2022;22. https://doi.org/10.3390/s22197177.

  78. Nakano H, Hirayama K, Sadamitsu Y, Toshimitsu A, Fujita H, Shin S, Tanigawa T. Monitoring sound to Quantify Snoring and Sleep Apnea Severity using a smartphone: Proof of Concept. J Clin Sleep Med. 2014;10:73–8. https://doi.org/10.5664/jcsm.3364.

    Article  Google Scholar 

  79. Castillo-Escario Y, Ferrer-Lluis I, Montserrat JM, Jane R. Entropy Analysis of Acoustic signals recorded with a smartphone for detecting Apneas and Hypopneas: a comparison with a Commercial System for Home Sleep Apnea diagnosis. IEEE Access. 2019;7:128224–41. https://doi.org/10.1109/ACCESS.2019.2939749.

    Article  Google Scholar 

  80. Tiron R, Lyon G, Kilroy H, Osman A, Kelly N, O’Mahony N, Lopes C, Coffey S, McMahon S, Wren M, et al. Screening for obstructive sleep apnea with Novel Hybrid Acoustic Smartphone App Technology. J Thorac Dis. 2020;12:4476–95. https://doi.org/10.21037/jtd-20-804.

    Article  Google Scholar 

  81. Hwang SH, Lee HJ, Yoon HN, Jung DW, Lee YJG, Lee YJ, Jeong DU, Park KS. Unconstrained sleep apnea monitoring using Polyvinylidene Fluoride Film-Based Sensor. IEEE Trans Biomed Eng. 2014;61:2125–34. https://doi.org/10.1109/TBME.2014.2314452.

    Article  Google Scholar 

  82. Mora GG, Kortelainen JM, Hernández ERP, Tenhunen M, Bianchi AM, Méndez MO. Evaluation of pressure Bed Sensor for Automatic SAHS Screening. IEEE Trans Instrum Meas. 2015;64:1935–43. https://doi.org/10.1109/TIM.2014.2366976.

    Article  Google Scholar 

  83. Mosquera-Lopez C, Leitschuh J, Condon J, Hagen CC, Rajhbeharrysingh U, Hanks C, Jacobs PG. Design and evaluation of a Non-Contact Bed-Mounted sensing device for automated in-home detection of obstructive sleep apnea: a pilot study. Biosensors. 2019;9. https://doi.org/10.3390/bios9030090.

  84. Perez-Pozuelo I, Zhai B, Palotti J, Mall R, Aupetit M, Garcia-Gomez JM, Taheri S, Guan Y, Fernandez-Luque L. The future of Sleep Health: A Data-Driven Revolution in Sleep Science and Medicine. npj Digit Med. 2020;3:42. https://doi.org/10.1038/s41746-020-0244-4.

    Article  Google Scholar 

  85. Dean DA, Goldberger AL, Mueller R, Kim M, Rueschman M, Mobley D, Sahoo SS, Jayapandian CP, Cui L, Morrical MG, et al. Scaling up Scientific Discovery in Sleep Medicine: the National Sleep Research Resource. Sleep. 2016;39:1151–64. https://doi.org/10.5665/sleep.5774.

    Article  Google Scholar 

  86. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. 2000;101. https://doi.org/10.1161/01.CIR.101.23.e215.

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A5A1015596). This research was supported by the Ministry of Science and ICT (MSIT), Korea under the Information Technology Research Center (ITRC) support program (IITP-2023-RS-2022-00156225) supervised by the Institute for Information, and Communications Technology Planning and Evaluation (IITP). The present Research has been conducted by the Research Grant of Kwangwoon University in 2023.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Writing-original draft preparation: All authors. Writing-review and editing: All authors.

Corresponding author

Correspondence to Sang Ho Choi.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study does not involve any human participants hence, the ethical approval is not required.

Consent to publish

All authors have approved the content for publications.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Choi, S.H. Technologies for sleep monitoring at home: wearables and nearables. Biomed. Eng. Lett. 13, 313–327 (2023). https://doi.org/10.1007/s13534-023-00305-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00305-8

Keywords

Navigation