Skip to main content
Log in

All-optical optoacoustic micro-tomography in reflection mode

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

High-resolution optoacoustic imaging at depths beyond the optical diffusion limit is conventionally performed using a microscopy setup where a strongly focused ultrasound transducer samples the image object point-by-point. Although recent advancements in miniaturized ultrasound detectors enables one to achieve microscopic resolution with an unfocused detector in a tomographic configuration, such an approach requires illuminating the entire object, leading to an inefficient use of the optical power, and imposing a trans-illumination configuration that is limited to thin objects. We developed an optoacoustic micro-tomography system in an epi-illumination configuration, in which the illumination is scanned with the detector. The system is demonstrated in phantoms for imaging depths of up to 5 mm and in vivo for imaging the vasculature of a mouse ear. Although image-formation in optoacoustic tomography generally requires static illumination, our numerical simulations and experimental measurements show that this requirement is relaxed in practice due to light diffusion, which homogenizes the fluence in deep tissue layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code Availability

The data files generated during and/or analysed during the current study are available from the corresponding author on a reasonable request.

Abbreviations

AR-PAM:

Acoustic Resolution Photoacoustic Microscopy

BP:

Back Projection

MZI:

Mach Zehnder Interferometer

NEP:

Noise Equivale Power

OAT:

Optoacoustic Tomography

PA:

Photo Acoustics

SPADE:

Silicon-Photonics Acoustic Detector

References

  1. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7:603.

    Article  Google Scholar 

  2. Taruttis A. Ntziachristos. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photon. 2015;9:219–27.

    Article  Google Scholar 

  3. Wang LV. Photoacoustic tomography: in vivo imaging from organelles to organ. Science. 2012;335:1458–62.

    Article  Google Scholar 

  4. Rosenthal A, Ntziachristos V, Razansky D. Acoustic inversion in optoacoustic tomography: A Review.Curr. Med. Imaging 2013; Rev.9,318–336.

  5. Omar M, Aguirre J, Ntziachristos V. Optoacoustic mesoscopy for biomedicine. Nat Biomed Eng. 2019;3:354–70.

    Article  Google Scholar 

  6. Baik JW, Kim JY, Cho S, Choi S, Kim J, Kim C. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans Med Imaging. 2020;39:975–84.

    Article  Google Scholar 

  7. Liu W. Yao. Photoacoustic microscopy: principles and biomedical applications. Biomed Eng Lett. 2018;8:203–13.

    Article  Google Scholar 

  8. Hu S, Wang LV. Optical-resolution Photoacoustic Microscopy: auscultation of biological systems at the cellular level. Biophys J. 2013;105(4):841–7.

    Article  Google Scholar 

  9. Park S, Lee C, Kim J, Kim C. Acoustic resolution photoacoustic microscopy. Biomed Eng Lett. 2014;4:213–22. https://doi.org/10.1007/s13534-014-0153-z

    Article  Google Scholar 

  10. Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24:848–51.

    Article  Google Scholar 

  11. Jeon S, Park J, Managuli R, Kim CA. Novel 2-D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy. IEEE Trans Med Imaging. 2019;38:250–60.

    Article  Google Scholar 

  12. Liao CK, Li ML, Li PC. Optoacoustic imaging with synthetic aperture focusing and coherence weighting. Opt Lett. 2004;29(21):2506–8.

    Article  Google Scholar 

  13. Shnaiderman R, Mustafa Q, Ülgen O, Wissmeyer G, Estrada H, Razansky D, Chmyrov A. V. Ntziachristos. Silicon-photonics point sensor for high-resolution optoacoustic imaging.Advanced Optical Materials, 2021.

  14. Hazan Y, Levi A, Nagli AM, Rosenthal A. Silicon-photonics acoustic detector for optoacoustic micro-tomography. Nat Commun. 2022;13:1488.

    Article  Google Scholar 

  15. Jacques SL. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013;58.

  16. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch. A Monte Carlo model of light propagation in tissue. 1989; Proc. SPIE 10305.

  17. A. A Leion, A. Pulkkinen, and T. Tarvainen. ValoMC: a Monte Carlo software and MATLAB toolbox for simulating light transport in biological tissue. 2019.

  18. E. Bradley, T. Treeby B. Cox.k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010;15 (2)021314.

  19. k-Wave A MATLAB toolbox for the time domain simulation of acoustic wave fields User Manual

  20. M. Xu, and L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. 2005; E 71, 016706.

  21. Z. Or, AR. Levi, Y. Hazan, A. Rosenthal. Hand-Held optoacoustic system for the localization of mid-depth blood vessels. Photonics, 2022; 9(12):907. https://doi.org/10.3390/photonics9120907

  22. S. Tsesses, D. Aronovich, A. Grinberg, E. Hahamovich, and A. Rosenthal. Modeling the sensitivity dependence of silicon-photonics-based ultrasound detectors. Opt. Lett. 2017; 42, 5262–5265.

  23. A. Rosenthal, S. Kellnberger, G. Sergiadis and V. Ntziachristos. Wideband fiber- interferometer stabilization with variable phase. IEEE Photonics Technology Letters. 2012; vol. 24(17) 1499–1501.

  24. L. Riobó, Y. Hazan, F. Veiras, M. Garea, P. Sorichetti, and A. Rosenthal. Noise reduction in resonator-based ultrasound sensors by using a CW laser and phase detection. Opt. Lett. 44. 2019; 2677–2680.

  25. J. Aguirre, M. Schwarz, N. Garzorz, M. Omar, A. Buehler, K. Eyerich and V. Ntziachristos. Precision assessment of label-free psoriasis biomarkers with ultra- broadband optoacoustic mesoscopy. Nat Biomed Eng. 2017; 0068

  26. Y. Hazan, and A. Rosenthal. Simultaneous multi-channel ultrasound detection via phase modulated pulse interferometry. Opt. Express. 2019; OE 27, 28844–28854.

  27. W.J. Westerveld, M.Ul. Hasan, R. Shnaiderman, V. Ntziachristos, X. Rottenberg, S. Severi, V. Rochus. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nature Photonics. 2021; 1–5. doi:10.1038/s41566-021-00776-0.

  28. E. Zhang, J. Laufer, P. Beard. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008; AO 47, 561–577.

  29. Q. Rong, Y. Lee, Y. Tang, T. Vu, C. Taboada, W. Zheng, J. Xia, D.A. Czaplewski, H.F. Zhang, C. Sun, J. Yao. High-frequency 3D photoacoustic computed tomography using an optical micro ring resonator. BME Frontiers. 2022; 2022, ID:9891510.

  30. Liang Y, Fu W, Li Q, Chen X, Sun H, Wang L, Jin L, Huang W, Guan BO. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat Commun. 2022 Dec 9;13(1):7604.

  31. I. A. Veres, P. Burgholzer, T. Berer, A. Rosenthal, G. Wissmeyer, and V. Ntziachristos. Characterization of of the spatio-temporal response of optical fiber sensors to incident spherical waves. The Journal of the Acoustical Society of America, 2014; 135, 1853. https://doi.org/10.1121/1.4868391

  32. A. Rosenthal, M. Ángel, A. Caballero, S. Kellnberger, D. Razansky, and V. Ntziachristos. Spatial characterization of the response of a silica optical fiber to wideband ultrasound.Opt. Lett., 2012; 37, 3174–3176. https://doi.org/10.1364/OL.37.003174

  33. J. Pan, Q. Li, Y. Feng, R. Zhong, Z. Fu, S. Yang, W. Sun, B. Zhang, Q. Sui, J. Chen,Y. Shen and Z. Li. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Research square, 2022; https://doi.org/10.21203/rs.3.rs-1965703/v1

  34. Y. Hazan, M. Nagli, A. Levi, A. Rosenthal. Miniaturized ultrasound detector arrays in silicon photonics using pulse transmission amplitude monitoring. Optics Letters. 2022;47(21).

Download references

Acknowledgements

We thank the Micro-Nano Center at the Technion for the use of the clean room facilities for the SPADE fabrication.

Funding

This work has received funding from the Israel Science Foundation (1709/20 A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Harary.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Conflict of Interest

The authors declare no conflicts of interest.

Ethics approval

IL-168-12-19.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harary, T., Hazan, Y. & Rosenthal, A. All-optical optoacoustic micro-tomography in reflection mode. Biomed. Eng. Lett. 13, 475–483 (2023). https://doi.org/10.1007/s13534-023-00278-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00278-8

Keywords

Navigation