Skip to main content
Log in

Blood pressure estimation and its recalibration assessment using wrist cuff blood pressure monitor

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

The rapid evolution of wearable technology in healthcare sectors has created the opportunity for people to measure their blood pressure (BP) using a smartwatch at any time during their daily activities. Several commercially-available wearable devices have recently been equipped with a BP monitoring feature. However, concerns about recalibration remain. Pulse transit time (PTT)-based estimation is required for initial calibration, followed by periodic recalibration. Recalibration using arm-cuff BP monitors is not practical during everyday activities. In this study, we investigated recalibration using PTT-based BP monitoring aided by a deep neural network (DNN) and validated the performance achieved with more practical wrist-cuff BP monitors. The PTT-based prediction produced a mean absolute error (MAE) of 4.746 ± 1.529 mmHg for systolic blood pressure (SBP) and 3.448 ± 0.608 mmHg for diastolic blood pressure (DBP) when tested with an arm-cuff monitor employing recalibration. Recalibration clearly improved the performance of both DNN and conventional linear regression approaches. We established that the periodic recalibration performed by a wrist-worn BP monitor could be as accurate as that obtained with an arm-worn monitor, confirming the suitability of wrist-worn devices for everyday use. This is the first study to establish the potential of wrist-cuff BP monitors as a means to calibrate BP monitoring devices that can reliably substitute for arm-cuff BP monitors. With the use of wrist-cuff BP monitoring devices, continuous BP estimation, as well as frequent calibrations to ensure accurate BP monitoring, are now feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Shimada K, Fujita T, Ito S, Naritomi H, Ogihara T, Shimamoto K, Tanaka H, Yoshiike N. The importance of home blood pressure measurement for preventing stroke and cardiovascular disease in hypertensive patients: a sub-analysis of the japan hypertension evaluation with angiotensin ii antagonist losartan therapy (j-health) study, a prospective nationwide observational study. Hypertens Res. 2008;31(10):1903–11.

    Article  Google Scholar 

  2. Puke S, Suzuki T, Nakayama K, Tanaka H, Minami S. Blood pressure estimation from pulse wave velocity measured on the chest. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 6107–6110. IEEE; 2013.

  3. Meyer S, Sander J, Gräber S, Gottschling S, Gortner L. Agreement of invasive versus non-invasive blood pressure in preterm neonates is not dependent on birth weight or gestational age. J Paediatr Child Health. 2010;46(5):249–54.

    Article  Google Scholar 

  4. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the subcommittee of professional and public education of the American heart association council on high blood pressure research. Hypertension. 2005;45(1):142–61.

    Article  Google Scholar 

  5. Nyvad J, Christensen KL, Buus NH, Reinhard M. The cuffless SOMNOtouch NIBP device shows poor agreement with a validated oscillometric device during 24-h ambulatory blood pressure monitoring. J Clin Hypertens. 2021;23(1):61–70.

    Article  Google Scholar 

  6. He X, Goubran RA, Liu XP. Evaluation of the correlation between blood pressure and pulse transit time. In: 2013 IEEE international symposium on medical measurements and applications (MeMeA), pp 17–20. IEEE; 2013.

  7. Wong MY-M, Poon CC-Y, Zhang Y-T. An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: a half year study on normotensive subjects. Cardiovasc Eng. 2009;9(1):32–8.

    Article  Google Scholar 

  8. Gesche H, Grosskurth D, Küchler G, Patzak A. Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol. 2012;112(1):309–15.

    Article  Google Scholar 

  9. Poon CCY, Zhang YT. Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. In: 2005 IEEE engineering in medicine and biology 27th annual conference, p. 5877–5880. IEEE; 2006.

  10. McCarthy BM, O’Flynn B, Mathewson A. An investigation of pulse transit time as a non-invasive blood pressure measurement method. In: Journal of physics: conference series, vol 307, p. 012060. IOP Publishing; 2011.

  11. Wang R, Jia W, Mao Z-H, Sclabassi RJ, Sun M. Cuff-free blood pressure estimation using pulse transit time and heart rate. In: 2014 12th international conference on signal processing (ICSP). IEEE; 2014. p. 115–118.

  12. Shao J, Shi P, Sijung H, Hongliu Yu. A revised point-to-point calibration approach with adaptive errors correction to weaken initial sensitivity of cuff-less blood pressure estimation. Sensors. 2020;20(8):2205.

    Article  Google Scholar 

  13. Qiang Z, Xianxiang C, Zhen F, Yongjiao X, Qingyuan Z, Ting Y, Shanhong X. Cuff-less blood pressure measurement using pulse arrival time and a Kalman filter. J Micromech Microeng. 2017;27(2):024002.

    Article  Google Scholar 

  14. Griggs D, Sharma M, Naghibi A, Wallin C, Ho V, Barbosa K, Ghirmai T, Cao H, Krishnan SK. Design and development of continuous cuff-less blood pressure monitoring devices. In: 2016 IEEE sensors. IEEE; 2016. p. 1–3.

  15. Barvik D, Cerny M, Penhaker M, Noury N. Noninvasive continuous blood pressure estimation from pulse transit time: a review of the calibration models. IEEE Rev Biomed Eng. 2021;15:138–51.

    Article  Google Scholar 

  16. Shao J, Shi P, Hu S. A unified calibration paradigm for a better cuffless blood pressure estimation with modes of elastic tube and vascular elasticity. J Sens 2021:2021.

  17. Schlesinger O, Vigderhouse N, Eytan D, Moshe Y. Blood pressure estimation from ppg signals using convolutional neural networks and siamese network. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2020. p. 1135–1139.

  18. Song K, Chung K, Chang J-H. Cuffless deep learning-based blood pressure estimation for smart wristwatches. IEEE Trans Instrum Meas. 2019;69(7):4292–302.

    Article  Google Scholar 

  19. Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans Biomed Eng. 2016;64(4):859–69.

    Article  Google Scholar 

  20. Thomson EA, Nuss K, Comstock A, Reinwald S, Blake S, Pimentel RE, Tracy BL, Li K. Heart rate measures from the Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. J Sports Sci. 2019;37(12):1411–9.

    Article  Google Scholar 

  21. Dörr M, Weber S, Birkemeyer R, Leonardi L, Winterhalder C, Raichle CJ, Brasier N, Burkard T, Eckstein J. iPhone App compared with standard blood pressure measurement—the iPARR trial. Am Heart J. 2021;233:102–8.

    Article  Google Scholar 

  22. Lee HY, Lee D-J, Seo J, Ihm S-H, Kim K-I, Cho EJ, Kim HC, Shin J, Park S, Sohn I-S, et al. Smartphone/smartwatch-based cuffless blood pressure measurement: a position paper from the Korean society of hypertension. Clin Hypertens. 2021;27(1):1–8.

    Article  Google Scholar 

  23. McCarthy BM, Vaughan CJ, O’flynn B, Mathewson A, Mathúna CÓ. An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms. J Hum Hypertens. 2013;27(12):744–50.

    Article  Google Scholar 

  24. Chen W, Kobayashi T, Ichikawa S, Takeuchi Y, Togawa T. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med Biol Eng Comput. 2000;38(5):569–74.

    Article  Google Scholar 

  25. Omboni S, Riva I, Giglio A, Caldara G, Groppelli A, Parati G. Validation of the Omron M5-I, R5-I and HEM-907 automated blood pressure monitors in elderly individuals according to the International Protocol of the European Society of Hypertension. Blood Pressure Monitor. 2007;12(4):233–42.

    Article  Google Scholar 

  26. Ilman N, Altunkan S, Kayatürk N, Altunkan E. Validation of the Braun BP 3550 wrist blood pressure measuring device with a position sensor and an EasyClick cuff according to the International Protocol in adults. Blood Pressure Monitor. 2007;12(1):45–9.

    Article  Google Scholar 

  27. Eom H, Lee D, Han S, Hariyani YS, Lim Y, Sohn I, Park K, Park C. End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism. Sensors. 2020;20(8):2338.

    Article  Google Scholar 

  28. Choi Y, Zhang Q, Ko S. Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert-Huang transform. Comput Electr Eng. 2013;39(1):103–11.

    Article  Google Scholar 

  29. Kumar R, Dubey PK, Zafer A, Kumar A, Yadav S. Past, present and future of blood pressure measuring instruments and their calibration. Measurement. 2021;172:108845.

    Article  Google Scholar 

  30. Ding X, Zhang Y, Tsang HK. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood pressure estimation. Physiol Meas. 2016;37(2):227.

    Article  Google Scholar 

  31. Mukkamala R, Hahn J-O. Toward ubiquitous blood pressure monitoring via pulse transit time: predictions on maximum calibration period and acceptable error limits. IEEE Trans Biomed Eng. 2017;65(6):1410–20.

    Article  Google Scholar 

  32. Moody GB, Mark RG. A database to support development and evaluation of intelligent intensive care monitoring. In: Computers in cardiology 1996. IEEE; 1996. p. 657–660.

  33. Yoon Y-Z, Kang JM, Kwon Y, Park S, Noh S, Kim Y, Park J, Hwang SW. Cuff-less blood pressure estimation using pulse waveform analysis and pulse arrival time. IEEE J Biomed Health Inform. 2017;22(4):1068–74.

    Article  Google Scholar 

  34. Zhou X, Peng R, Ding H, Zhang N, Li P. Validation of new and existing decision rules for the estimation of beat-to-beat pulse transit time. BioMed Res Int, 2015;2015.

  35. Maher N. Non-invasive calibration-free blood pressure estimation based on artificial neural network 04 2019.

  36. El-Hajj C, Kyriacou PA. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed Signal Process Control. 2020;58:101870.

    Article  Google Scholar 

  37. Biancofiore F, Busilacchio M, Verdecchia M, Tomassetti B, Aruffo E, Bianco S, Di Tommaso S, Colangeli C, Rosatelli G, Di Carlo P. Recursive neural network model for analysis and forecast of pm10 and pm2.5. Atmos Pollut Res. 2017;8(4):652–9.

    Article  Google Scholar 

  38. Cheng H, Xie Z, Shi Y, Xiong N. Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM. IEEE Access. 2019;7:117883–96.

    Article  Google Scholar 

  39. Lyu P, Chen N, Mao S, Li M. LSTM based encoder-decoder for short-term predictions of gas concentration using multi-sensor fusion. Process Saf Environ Prot. 2020;137:93–105.

    Article  Google Scholar 

  40. Rutschmann OT, Sarasin FP, Simon J, Vermeulen B, Riberdy L, Pechere-Bertschi A. Can wrist blood pressure oscillometer be used for triage in an adult emergency department? Ann Emerg Med. 2005;46(2):172–6.

    Article  Google Scholar 

  41. Casiglia E, Tikhonoff V, Albertini F, Palatini P. Poor reliability of wrist blood pressure self-measurement at home: a population-based study. Hypertension. 2016;68(4):896–903.

    Article  Google Scholar 

  42. Ali EA, Omar SM, Ibrahim Y, Al-Wutayd O, Adam I. Validation of the wrist blood pressure measuring device Omron RS6 (HEM-6221-E) among obese Sudanese patients according to the European Society of Hypertension International Protocol Revision 2010. F1000Research. 2020;9:1284.

    Article  Google Scholar 

  43. Kario K, Shimbo D, Tomitani N, Kanegae H, Schwartz JE, Williams B. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens. 2020;22(2):135–41.

    Article  Google Scholar 

  44. Melville S, Teskey R, Philip S, Simpson JA, Lutchmedial S, Brunt KR. A comparison and calibration of a wrist-worn blood pressure monitor for patient management: assessing the reliability of innovative blood pressure devices. J Med Internet Res. 2018;20(4):e8009.

    Article  Google Scholar 

  45. Ahn JW, Ku Y, Kim HC. A novel wearable EEG and ECG recording system for stress assessment. Sensors. 2019;19(9):1991.

    Article  Google Scholar 

  46. Yang S, Zhang Y, Cho S-Y, Correia R, Morgan SP. Non-invasive cuff-less blood pressure estimation using a hybrid deep learning model. Opt Quantum Electron. 2021;53(2):1–20.

    Article  Google Scholar 

  47. Frese EM, Fick A, Sadowsky HS. Blood pressure measurement guidelines for physical therapists. Cardiopulm Phys Therapy J. 2011;22(2):5.

    Article  Google Scholar 

  48. Zhang Y, Zhang X, Cui P, Li S, Tang J. Key feature selection and model analysis for blood pressure estimation from electrocardiogram, ballistocardiogram and photoplethysmogram. IEEE Access. 2021;9:54350–9.

    Article  Google Scholar 

  49. Nabeel PM, Jayaraj J, Mohanasankar S. Single-source PPG-based local pulse wave velocity measurement: a potential cuffless blood pressure estimation technique. Physiol Meas. 2017;38(12):2122.

    Article  Google Scholar 

  50. Huynh TH, Jafari R, Chung W-Y. Noninvasive cuffless blood pressure estimation using pulse transit time and impedance plethysmography. IEEE Trans Biomed Eng. 2018;66(4):967–76.

    Article  Google Scholar 

  51. Zhang Q, Zhou D, Zeng X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed Eng Online. 2017;16(1):1–20.

    Article  Google Scholar 

  52. Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, Sakatani K, Kobayashi H, Kanaya S. A chair-based unobtrusive cuffless blood pressure monitoring system based on pulse arrival time. IEEE J Biomed Health Inform. 2016;21(5):1194–205.

    Article  Google Scholar 

  53. Bak H, Lee S. A 1d cnn-lstm using wav2vec 2.0 for violent scene discrimination. IEIE Transactions on Smart Processing & Computing. 2022;11(2):92–6.

  54. Lee Y, Kang B. Where to look: Visual attention estimation in road scene video for safe driving. IEIE Trans-actions on Smart Processing & Computing. 2022;11(2):105–11.

  55. Landry C, Hedge ET, Hughson RL, Peterson SD, Arami A. Accurate blood pressure estimation during activities of daily living: a wearable cuffless solution. IEEE J Biomed Health Inform. 2021;25(7):2510–20.

    Article  Google Scholar 

  56. Mostafa MMA, Hasanin AM, Alhamade F, Abdelhamid B, Safina AG, Kasem SM, Hosny O, Mahmoud M, Fouad E, Rady A, et al. Accuracy and trending of non-invasive oscillometric blood pressure monitoring at the wrist in obese patients. Anaesth Crit Care Pain Med. 2020;39(2):221–7.

    Article  Google Scholar 

  57. Campbell NRC, Berbari AE, Cloutier L, Gelfer M, Kenerson JG, Khalsa TK, Lackland DT, Lemogoum D, Mangat BK, Mohan S, et al. Policy statement of the world hypertension league on noninvasive blood pressure measurement devices and blood pressure measurement in the clinical or community setting. J Clin Hypertens. 2014;16(5):320.

    Article  Google Scholar 

  58. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng. 1985;3:230–6.

    Article  Google Scholar 

  59. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exercise. 2001;33(6):S484–92.

    Article  Google Scholar 

  60. Brett SE, Ritter JM, Chowienczyk PJ. Diastolic blood pressure changes during exercise positively correlate with serum cholesterol and insulin resistance. Circulation. 2000;101(6):611–5.

    Article  Google Scholar 

  61. Ding X, Yan BP, Zhang Y-T, Liu J, Zhao N, Tsang HK. Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci Rep. 2017;7(1):1–11.

    Article  Google Scholar 

  62. Hahnen C, van Helmond N. Blood pressure measurement using pulse transit time. Nederlands Tijdschrift Voor Geneeskunde. 2019;163:D3408.

    Google Scholar 

  63. Simjanoska M, Gjoreski M, Gams M, Madevska Bogdanova A. Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors. 2018;18(4):1160.

    Article  Google Scholar 

  64. Kachuee M, Kiani MM, Mohammadzade H, Shabany M. Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans Biomed Eng. 2017;64(4):859–69.

    Article  Google Scholar 

  65. Aguirre N, Grall-Maës E, Cymberknop LJ, Armentano RL. Blood pressure morphology assessment from photoplethysmogram and demographic information using deep learning with attention mechanism. Sensors. 2021;21(6):2167.

    Article  Google Scholar 

  66. Slapničar G, Mlakar N, Luštrek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors. 2019;19(15):3420.

    Article  Google Scholar 

  67. Dastjerdi AE, Kachuee M, Shabany M. Non-invasive blood pressure estimation using phonocardiogram. In: 2017 IEEE international symposium on circuits and systems (ISCAS); 2017. p. 1–4.

  68. Bote JM, Recas J, Hermida R. Evaluation of blood pressure estimation models based on pulse arrival time. Comput Electr Eng. 2020;84:106616.

    Article  Google Scholar 

  69. Blood pressure watch: Omron heartguide wrist bp monitor.

  70. Watanabe N, Bando YK, Kawachi T, Yamakita H, Futatsuyama K, Honda Y, Yasui H, Nishimura K, Kamihara T, Okumura T, et al. Development and validation of a novel cuff-less blood pressure monitoring device. Basic Transl Sci. 2017;2(6):631–42.

    Google Scholar 

Download references

Funding

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant NRF-2017R1A5A1015596; and in part by the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korea government(MSIT) (No. 1711179046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngho Cho or Cheolsoo Park.

Ethics declarations

Conflict of interest

All authors have no conficts of interest relevant to this study to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Y., Kwon, S., Sunarya, U. et al. Blood pressure estimation and its recalibration assessment using wrist cuff blood pressure monitor. Biomed. Eng. Lett. 13, 221–233 (2023). https://doi.org/10.1007/s13534-023-00271-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-023-00271-1

Keywords

Navigation