Skip to main content
Log in

A review on wireless powering schemes for implantable microsystems in neural engineering applications

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Wireless power delivery is one of the key issues for fully implantable microsystems in neural engineering applications, such as microminiaturized neural stimulators and neural recording systems implanted in brain or other neural tissues. Although advances in semiconductor microelectronic technologies enable us to develop a low-power chip-scale neural microsystem, active electronics in the chip still consume challenging amounts of electrical energy for wireless energy harvesting to sense neural signals, processing data, and broadcasting the data to external receivers. In this paper, various wireless power delivery or harvesting schemes, including radio frequency, ultrasound, light, thermal, mechanical, and biochemical energies, have been reviewed, and performance characteristics, as well as pros and cons of the schemes, have been compared. This review aims at providing insightful information for system architects to design implantable neural microsystems with optimal wireless powering schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mallela VS, Ilankumaran V, Rao NS. Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J. 2004; 4(4):201–12.

    Google Scholar 

  2. Borton DA, Yim M, Aceros J, Nurmikko A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J Neural Eng. 2013; 10(2):026010.

    Article  Google Scholar 

  3. Li P, Bashirullah R. A wireless power interface for rechargeable battery operated medical implants. IEEE T Circuits Syst II. 2007; 54(10):912–6.

    Article  Google Scholar 

  4. Mavoori J, Jackson A, Diorio C, Fetz E. An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods. 2005; 148(1):71–7.

    Article  Google Scholar 

  5. Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996; 41(11):2251–69.

    Article  Google Scholar 

  6. Nurmikko AV, Donoghue JP, Hochberg LR, Patterson WR, Song YK, Bull CW, Borton DA, Laiwalla F, Park S, Ming Y, Aceros J. Listening to brain microcircuits for interfacing with external world-progress in wireless implantable microelectronic neuroengineering devices. Proc IEEE Inst Electr Electron Eng. 2010; 98(3):375–88.

    Article  Google Scholar 

  7. IEEE recommended practice for determining the peak spatialaverage specific absorption rate (SAR) in the human head from wireless communications devices: Measurement techniques. IEEE Std 1528-2003. 2003; 1-120. http://ieeexplore.ieee.org/document/6589093/.

  8. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008; 2(6):1003–15.

    Article  Google Scholar 

  9. Ghovanloo M, Atluri S. A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple-carriers. IEEE T Circuits Syst I. 2007; 54(10):2211–21.

    Article  Google Scholar 

  10. Von Arx JA, Najafi K. On-chip coils with integrated cores for remote inductive powering of integrated microsystems. Conf Proc Int Conf Solid State Sensors and Actuators. 1997; 2:999–1002.

    Article  Google Scholar 

  11. Park J, Tak Y, Kim Y, Kim Y, Nam S. Investigation of adaptive matching methods for near-field wireless power transfer. IEEE T Antennas Propag. 2011; 59(5):1769–73.

    Article  Google Scholar 

  12. Schuder JC, Stephenson HE, Townsend JF. Energy transfer into a closed chest by means of stationary coupling coils and a portable high-power oscillator. T Am Soc Artif Intern Organs. 1961; 7:327–31.

    Google Scholar 

  13. Catrysse M, Hermans B, Puers R. An inductive power system with integrated bi-directional data-transmission. Sensors Actuators A Phys. 2004; 115(2-3):221–9.

    Article  Google Scholar 

  14. Vaillancourt P, Djemouai A, Harvey JF, Sawan M. EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant. Conf Proc IEEE Eng Med Biol Soc. 1997; 6:2499–502.

    Google Scholar 

  15. Aceros J, Yin M, Borton DA, Patterson WR, Nurmikko AV. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions. Conf Proc IEEE Eng Med Biol Soc. 2011; 1:2300–6.

    Google Scholar 

  16. Biederman W, Yeager DJ, Narevsky N, Koralek AC, Carmena JM, Alon E, Rabaey JM. A fully-integrated, miniaturized (0.125mm2) 10.5µW wireless neural sensor. IEEE J Solid-State Circuits. 2013; 48(4):960–70.

    Article  Google Scholar 

  17. Song YK, Borton DA, Park S, Patterson WR, Bull CW, Laiwalla F, Mislow J, Simeral JD, Donoghue JP, Nurmikko AV. Active microelectronic neurosensor arrays for implantable brain communication interfaces. IEEE T Neural Syst Rehabil Eng. 2009; 17(4):339–45.

    Article  Google Scholar 

  18. Song YK, Patterson WR, Bull CW, Beals J, Hwang N, Deangelis AP, Lay C, McKay JL, Nurmikko AV, Fellows MR, Simeral JD, Donoghue JP. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE T Neural Syst Rehabil Eng. 2005; 13(2):220–6.

    Article  Google Scholar 

  19. Pistor J, Hoeffmann J, Rotermund D, Tolstosheeva E, Schellenberg T, Boll D, Gordillo-Gonzalez V, Mandon S, Peters-Drolshagen D, Kreiter A, Schneider M, Lang W, Pawelzik K, Paul S. Development of a fully implantable recording system for ECoG signals. Conf Proc Des Autom Test Eur Exhib. 2013; 1:893–8.

    Google Scholar 

  20. Muller R, Hanh-Phuc L, Wen L, Ledochowitsch P, Gambini S, Bjorninen T, Koralek A, Carmena JM, Maharbiz MM, Alon E, Rabaey JM. A minimally Invasive 64-channel wireless µECoG Implant. IEEE J Solid-State Circuits. 2015; 50(1):1–16.

    Article  Google Scholar 

  21. Irazoqui-Pastor P, Mody I, Judy JW. In-vivo EEG recording using a wireless implantable neural transceiver. Conf Proc IEEE Eng Med Biol Soc. 2003; 1:622–5.

    Google Scholar 

  22. Young DJ. Wireless powering and data telemetry for biomedical implants. Conf Proc IEEE Eng Med Biol Soc. 2009; 1:3221–224.

    Google Scholar 

  23. Cong P, Chaimanonart N, Ko WH, Young DJ. A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J Solid-State Circuits. 2009; 44(12):3631–44.

    Article  Google Scholar 

  24. Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, Peckham PH. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE T Biomed Eng. 1998; 45(4):463–75.

    Article  Google Scholar 

  25. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljacic M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007; 317(5834):83–6.

    Article  MathSciNet  Google Scholar 

  26. Cannon BL, Hoburg JF, Stancil DD, Goldstein SC. Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE T Power Electron. 2009; 24(7):1819–25.

    Article  Google Scholar 

  27. Ramrakhyani AK, Mirabbasi S, Mu C. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE T Biomed Circuits Syst. 2011; 5(1):48–63.

    Article  Google Scholar 

  28. Popovic Z, Falkenstein EA, Costinett D, Zane R. Low-power far-field wireless powering for wireless sensors. Proc IEEE. 2013; 101(6):1397–409.

    Article  Google Scholar 

  29. Chow EY, Yang CL, Ouyang YH, Chlebowski AL, Irazoqui PP, Chappell WJ. Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE T Antennas Propag. 2011; 59(6):2379–87.

    Article  Google Scholar 

  30. Chow E, Chin-Lung C, Ouyang Y, Chlebowski A, Irazoqui PP, Charppell WJ. Wireless powering and propagation of radio frequencies through tissue. In: Johnson IA. Wireless Power Transfer. River Publisher, Aalborg, 2012; 301–36.

    Google Scholar 

  31. Bercich RA, Duffy DR, Irazoqui PP. Far-field RF powering of implantable devices: Safety considerations. IEEE T Biomed Eng. 2013; 60(8):2107–12.

    Article  Google Scholar 

  32. Yamada T, Uezono T, Okada K, Masu K, Oki A, Horiike Y. RF attenuation characteristics for in vivo wireless healthcare chip. Jpn J Appl Phys. 2005; 44:5275–7.

    Article  Google Scholar 

  33. Specific absorption rate (SAR) for cell phones: What it means for you. In: Consumer Guide. 2014. http://transition.fcc.gov/cgb/consumerfacts/sar.pdf. Accessed 28-Nov-2016.

  34. Radio frequency wireless technology in medical devices -guidance for industry and food and drug administration staff. In: FDA Guidance Documents. 2013. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm077272.pdf. Accessed 28-Nov-2016.

  35. O’Driscoll S, Poon A, Meng TH. A mm-sized implantable power receiver with adaptive link compensation. Conf Proc IEEE Int Solid-State Circuits Conf. 2009; 1:294–5.

    Google Scholar 

  36. Schwerdt HN, Miranda FA, Chae J. A fully passive wireless backscattering neurorecording microsystem embedded in dispersive human-head phantom medium. IEEE Electron Device Lett. 2012; 33(6):908–10.

    Article  Google Scholar 

  37. Towe BC. Passive backscatter biotelemetry for neural interfacing. Conf Proc IEEE Eng Med Biol Soc Conf Neural Eng. 2007; 1:144–7.

    Google Scholar 

  38. Chow EY, Ouyang Y, Beier B, Chappell WJ, Irazoqui PP. Evaluation of cardiovascular stents as antennas for implantable wireless applications. IEEE T Microw Theory Tech. 2009; 57(10):2523–32.

    Article  Google Scholar 

  39. Marnat L, Ouda MH, Arsalan M, Salama K, Shamim A. Onchip implantable antennas for wireless power and data transfer in a glaucoma-monitoring SoC. IEEE Antennas Wirel Propag Lett. 2012; 11:1671–4.

    Article  Google Scholar 

  40. Perillo M, Zhao C, Heinzelman W. On the problem of unbalanced load distribution in wireless sensor networks. Conf Proc IEEE Glob Telecommun Conf Workshop. 2004; 1:74–9.

    Google Scholar 

  41. Karalis A, Joannopoulos JD, Soljacic M. Efficient wireless nonradiative mid-range energy transfer. Annal Phys. 2008; 323(1):34–48.

    Article  Google Scholar 

  42. Hui SYR, Zhong WX, Lee CK. A critical review of recent progress in mid-range wireless power transfer. IEEE T Power Electr. 2014; 29(9):4500–11.

    Article  Google Scholar 

  43. Ho JS, Yeh AJ, Neofytou E, Kim S, Tanabe Y, Patlolla B, Beygui RE, Poon AS. Wireless power transfer to deep-tissue microimplants. Proc Natl Acad Sci USA. 2014; 111(22):7974–9.

    Article  Google Scholar 

  44. Kim S, Ho JS, Poon AS. Midfield wireless powering of subwavelength autonomous devices. Phys Rev Lett. 2013; 110:203905.

    Article  Google Scholar 

  45. Seward JB, Hagler DJ, Mair DD, Lie JT. Two-dimensional real-time ultrasonic imaging of the heart and great vessels. Technique, image orientation, structure identification, and validation. Mayo Clin Proc, 1978; 53(5):271–303.

    Google Scholar 

  46. Hideyuki K, Tamotsu K, Hideo S, Osami S, Kazuhito K. Power and information transmission to implanted medical device using ultrasonic. Jap J Appl Phys. 2001; 40:3865.

    Article  Google Scholar 

  47. Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic power and data link for wireless implantable applications. Conf Proc Int Symp Wirel Pervasive Comput. 2007; 1:567–571.

    Google Scholar 

  48. Ifantis A, Kalis A. On the use of ultrasonic communications in biosensor networks. Conf Proc IEEE Int Conf Bioinform Bioeng. 2008; 1:1–6.

    Google Scholar 

  49. Denisov A, Yeatman E. Ultrasonic vs. Inductive power delivery for miniature biomedical implants. Conf Proc Int Conf Body Sens Netw 2010; 1:84–9.

    Google Scholar 

  50. Ozeri S, Shmilovitz D. Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics. 2010; 50(6):556–66.

    Article  Google Scholar 

  51. Tsai JY, Huang KH, Wang JR, Liu SI, Li PC. Ultrasonic wireless power and data communication for neural stimulation. Conf Proc IEEE Int Ultrason Symp. 2011; 1:1052–5.

    Google Scholar 

  52. Bertrand A, Dongjin S, Maksimovic F, Carmena JM, Maharbiz MM, Alon E, Rabaey JM. Beamforming approaches for untethered, ultrasonic neural dust motes for cortical recording: A simulation study. Conf Proc IEEE Eng Med Biol Soc. 2014; 1:2625–8.

    Google Scholar 

  53. Seo D, Carmena JM, Rabaey JM, Alon E, Maharbiz MM. Neural dust: An ultrasonic, low power solution for chronic brain-machine interfaces. eprint arXiv:1307.2196. 2013.

    Google Scholar 

  54. Maleki T, Cao N, Song SH, Kao C, Ko SC, Ziaie B. An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE T Biomed Eng. 2011; 58(11):3104–11.

    Article  Google Scholar 

  55. Langton CM, Ali AV, Riggs CM, Evans GP, Bonfield W. A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. Clin Phys Physiol Meas. 1990; 11(3):243–9.

    Article  Google Scholar 

  56. Sanni A, Vilches A, Toumazou C. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE T Biomed Circuits Syst. 2012; 6(4):297–308.

    Article  Google Scholar 

  57. Shen C, Xu J, Fang NX, Jing Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys Rev X. 2014; 4(4):041033.

    Google Scholar 

  58. Chapin D, Fuller C, Pearson G. A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954; 25:676–7.

    Article  Google Scholar 

  59. De Vos A. Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys. 1980; 13(5):839–46.

    Article  Google Scholar 

  60. O’regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991; 353:737–40.

    Article  Google Scholar 

  61. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables (version 45). Prog Photovoltaics 2015; 23(1):1–9.

    Article  Google Scholar 

  62. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells -enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995; 270(5243): 1789–91.

    Article  Google Scholar 

  63. Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using led lights. IEEE T Consum Electr. 2004; 50(1):100–7.

    Article  Google Scholar 

  64. Murakawa K, Kobayashi M, Nakamura O, Kawata S. A wireless near-infrared energy system for medical implants. IEEE Eng Med Biol Mag. 1999; 18(6):70–2.

    Article  Google Scholar 

  65. Troy TL, Thennadil SN. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J Biomed Opt. 2001; 6(2):167–76.

    Article  Google Scholar 

  66. McCormick PW, Stewart M, Lewis G, Dujovny M, Ausman JI. Intracerebral penetration of infrared light: Technical note. J Neurosurg. 1992; 76(2):315–8.

    Article  Google Scholar 

  67. Song YK, Simeral J, Patterson RP, Bull CW, Davitt KM, Shapiro MD, Zhang J, Nurmikko AV, Donoghue JP. A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation. J Neural Eng. 2007; 4(3):213–8.

    Article  Google Scholar 

  68. Goto K, Nakagawa T, Nakamura O, Kawata S. An implantable power supply with an optically rechargeable lithium battery. IEEE T Biomed Eng. 2001; 48(7):830–3.

    Article  Google Scholar 

  69. Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, Galambos L, Smith R, Harris JS, Sher A, Palanker D. Photovoltaic retinal prosthesis with high pixel density. Nature Photonics. 2012; 6(6):391–7.

    Article  Google Scholar 

  70. Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC. Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE. 2008; 96(9):1457–86.

    Article  Google Scholar 

  71. Kang JY. Micropower for medical applications. In: Webster JG. Encyclopedia of Medical Devices and Instrumentation. 2nd ed. Wiley; 2006.

    Google Scholar 

  72. Qi Y, McAlpine MC. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci. 2010; 3:1275–85.

    Article  Google Scholar 

  73. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thinfilm thermoelectric devices with high room-temperature figures of merit. Nature. 2001; 413(6856):597–602.

    Article  Google Scholar 

  74. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008; 321(5895):1457–61.

    Article  Google Scholar 

  75. Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E. Observation of the spin seebeck effect. Nature. 2008; 455(7214):778–81.

    Article  Google Scholar 

  76. Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. Conf Proc Int Conf Thermoelectr. 2005; 265–7.

    Google Scholar 

  77. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P. Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008; 451(7175):163–7.

    Article  Google Scholar 

  78. Koplow M, Chen A, Steingart D, Wright PK, Evans JW. Thick film thermoelectric energy harvesting systems for biomedical applications. Conf Proc 5th Int Summer Sch Symp Med Device Biosens. 2008; 1:322–5.

    Google Scholar 

  79. Wang W, Jia FL, Huang QH, Zhang JZ. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron Eng. 2005; 77(3-4): 223–9.

    Article  Google Scholar 

  80. Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Comm. 2003; 26(11):1131–44.

    Article  Google Scholar 

  81. Beeby SP, Tudor MJ, White NM. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol. 2006; 17(12):R175–95.

    Article  Google Scholar 

  82. Anton SR, Sodano HA. A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct. 2007; 16(3):R1–21.

    Article  Google Scholar 

  83. Guyomar D, Lallart M. Recent progress in piezoelectric conversion and energy harvesting using nonlinear electronic interfaces and issues in small scale implementation. Micromachines. 2011; 2(2):274–94.

    Article  Google Scholar 

  84. Lewandowski BE, Kilgore KL, Gustafson KJ. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Ann Biomed Eng. 2007; 35(4):631–41.

    Article  Google Scholar 

  85. Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science. 2006; 312(5771):242–6.

    Article  Google Scholar 

  86. Qin Y, Wang X, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature. 2008; 451(7180):809–13.

    Article  Google Scholar 

  87. Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010; 10(6):2133–7.

    Article  Google Scholar 

  88. Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, Xia J, Doraiswamy V, Dehdashti B, Feng X, Lu B, Poston R, Khalpey Z, Ghaffari R, Huang Y, Slepian MJ, Rogers JA. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA. 2014; 111(5):1927–32.

    Article  Google Scholar 

  89. Barton SC, Gallaway J, Atanassov P. Enzymatic biofuel cells for implantable and microscale devices. Chem Rev. 2004; 104(10):4867–86.

    Article  Google Scholar 

  90. Kerzenmacher S, Ducree J, Zengerle R, von Stetten F. An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J Power Sources. 2008; 182(1):66–75.

    Article  Google Scholar 

  91. Rapoport BI, Kedzierski JT, Sarpeshkar R. A glucose fuel cell for implantable brain-machine interfaces. PLoS One. 2012; 7(6):e38436.

    Article  Google Scholar 

  92. Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, Spinks GM, Wallace GG, Lima MD, Kozlov ME, Baughman R, Kim SJ. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat Comm. 2014; 5:3928.

    Google Scholar 

  93. Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathe S, Paolo P, Cosnier S. A glucose biofuel cell implanted in rats. PLoS One. 2010; 5(5):e10476.

    Article  Google Scholar 

  94. Niessen J, Schröder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation–a bacterial fuel cell operating on starch. Electrochem Commun. 2004; 6(9):955–8.

    Article  Google Scholar 

  95. Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett. 2003; 25(18):1531–5.

    Article  Google Scholar 

  96. Mirbozorgi SA, Bahrami H, Sawan M, Rusch LA, Gosselin B. A single-chip full-duplex high speed transceiver for multi-site stimulating and secording neural implants. IEEE T Biomed Circ Sys. 2016; 10(3):643–53.

    Article  Google Scholar 

  97. Seo D, Neely RM, Shen K, Singhal U, Alon E, Rabaey JM, Carmena JM, Maharbiz MM. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron. 2016; 91(3):529–39.

    Article  Google Scholar 

  98. Zarghamand M, Gulak PG. Maximum achievable efficiency in near field coupled power transfer system. IEEE T Biomed Circ Sys. 2012; 6(3):228–45.

    Article  Google Scholar 

  99. Bjorninen T, Muller R, Ledochowitsch P, Sydanheimo L, Ukkonen L, Rabaey J. Antenna design for wireless electrocorticography. Conf Proc IEEE Antennas Propag Soc Int Symp. 2012; 1:1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Jang, J. & Song, YK. A review on wireless powering schemes for implantable microsystems in neural engineering applications. Biomed. Eng. Lett. 6, 205–215 (2016). https://doi.org/10.1007/s13534-016-0242-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-016-0242-2

Keywords

Navigation