Skip to main content
Log in

L-ascorbic acid and α-tocopherol treatment alleviates parabenzoquinone-induced hemato-biochemical and histopathological changes in Wistar rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The effect of L-ascorbic acid and α-tocopherol on parabenzoquinone(p-BQ)-induced hemato-biochemical and histological alterations in the liver and kidney of male Wistar rats was investigated.

Material and methods

Animals (n = 40) were divided into eight groups, all receiving p-BQ(1.5 mg Kg−1, i.p) for 21 days except the control group I which received equal amount of double-distilled water only. Group II served as positive control group, while all other groups received either L-ascorbic acid or α-tocopherol or combination of both L-ascorbic acid and α-tocopherol for 21 consecutive days.

Results

p-BQ significantly (P < 0.05) increased the neutrophil and platelet counts while reducing (P < 0.05) the total count of RBC, WBC, Hb, Hct, and lymphocyte. Animals administered p-BQ were found to have higher levels of hepatic (ALP, SGOT, and SGPT) and renal (creatinine, urea, and BUN) biomarker activity. Additionally, p-BQ treatment also significantly reduces HDL with concurrent elevation in the serum level of (P < 0.05), total cholesterol, triglycerides, and LDL. In the liver and kidney, p-BQ treatment caused significant reduction in total antioxidant capacity (SOD, CAT, GST& GSH) and also increases the level of MDA, marker of lipid peroxidation. The normal histoarchitecture of the liver and kidney tissues was disrupted indicating severe pathological changes after treatment with p-BQ. However, co-treatment with L-ascorbic acid and α-tocopherol, either alone or in combination, was effective in alleviating p-BQ-induced hemato-biochemical, antioxidant enzymes, and histopathological alterations in the treated animals.

Conclusion

To summarize, it appears that combined treatment with L-ascorbic acid and α-tocopherol was much more effective in ameliorating p-BQ-induced hematological and hepato-renal toxicity compared to only single vitamin treatment in Wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ma Z, Yao D, Zhao J, Li H, Chen Z, Cui P, Zhu Z, Wang L, Wang Y, Ma Y, Gao J (2021) Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis. Process Saf Environ Prot 1(148):462–472

    Article  Google Scholar 

  2. Spatari G, Allegra A, Carrieri M, Pioggia G, Gangemi S (2021) Epigenetic effects of benzene in hematologic neoplasms: the altered gene expression. Cancers 13(10):2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jena AB, Samal RR, Kumari K, Pradhan J, Chainy GBN, Subudhi U, Pal S, Dandapat J (2021) The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: a biophysical study. Int J Biol Macromol 167:871–80. https://doi.org/10.1016/j.ijbiomac.2020.11.044

    Article  CAS  PubMed  Google Scholar 

  4. Hazardous Substances Data Bank (1993) Bethesda: National Toxicology Information Program, National Library of Medicine

  5. Das A, Dey N, Ghosh A, Das T, Chatterjee IB (2011) NAD (P) H: quinoneoxidoreductase 1 deficiency conjoint with marginal vitamin C deficiency causes cigarette smoke induced myelodysplastic syndromes. PLoS ONE 6(5):e20590. https://doi.org/10.1371/journal.pone.0020590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghosh A, Banerjee S, Mitra A, Muralidharan M, Roy B, Banerjee R, Mandal AK, Chatterjee IB (2016) Interaction of p-benzoquinone with hemoglobin in smoker’s blood causes alteration of structure and loss of oxygen binding capacity. Toxicol Rep 3:295–305. https://doi.org/10.1016/j.toxrep.2016.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hegazy RM, Kamel HF (2014) Oxidant hepatic & /or Haem. Injury on fuel-station workers exposed to benzene vapor, possible protection of antioxidants. Am J Med Med Sci 4(2):34–46. https://doi.org/10.5923/j.ajmms.20140402.01

    Article  Google Scholar 

  8. Snyder R (2007) Benzene’s toxicity: a consolidated short review of human and animal studies by HAKhan. Hum Exp Toxicol 26(9):687–96. https://doi.org/10.1177/0960327107083975

    Article  CAS  PubMed  Google Scholar 

  9. Magdy BW, Mohamed FE, Amin AS, Rana SS (2016) Ameliorative effect of antioxidants (vitamins C and E) against abamectin toxicity in liver, kidney and testis of male albino rats. J Basic Appl Zool 77:69–82. https://doi.org/10.1016/j.jobaz.2016.10.002

    Article  Google Scholar 

  10. Ganguly S, Chandra A, Chattopadhyay DJ, Chatterjee IB (2017) p-benzoquinoneinitiates non-invasive urothelial cancer through aberrant tyrosine phosphorylation of EGFR, MAP kinase activation and cell cycle deregulation: prevention by vitamin C. Toxicol Rep 4:296–305. https://doi.org/10.1016/j.toxrep.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abou EMF, Elbaiomy AE, Ahmed MS, Alsharif KF, Dahran N, Elmahallawy EK, Mokhbatly AA (2022) Ameliorative effects of bovine lactoferrin on benzene-induced hematotoxicity in albino rats. Front Vet Sci 9:5558

    Google Scholar 

  12. Liang B, Chen Y, Yuan W, Qin F, Zhang Q, Deng N, Liu X, Ma X, Zhang X, Zhang B, Deng Q, Huang M, Tang H, Liu L, Chen W, Xiao Y (2018) Down-regulation of miRNA-451a and miRNA-486–5p involved in benzene-induced inhibition on erythroidcell differentiation in vitro and in vivo. Arch Toxicol 92(1):259–72. https://doi.org/10.1007/s00204-017-2033-7

    Article  CAS  PubMed  Google Scholar 

  13. Arika WM, Nyamai DW, Musila MN, Ngugi MP, Njagi EN (2016) Hematological markers of in vivo toxicity. J Hematol Thromboembol Dis. https://doi.org/10.4172/2329-8790.1000236

    Article  Google Scholar 

  14. Ovuru SS, Ekweozor IK (2004) Haematological changes associated with crude oil ingestion in experimental rabbits. Afr J Biotech 3(6):346–348

    Article  CAS  Google Scholar 

  15. D’Azevedo PA, Tannhauser M, Tannhauser SL, Barros HM (1996) Hematological alterations in rats from xylene and benzene. Vet Hum Toxicol 38(5):340–4

    PubMed  Google Scholar 

  16. D’Andrea MA, Reddy GK (2014) Hematological and hepatic alterations in nonsmoking residents exposed to benzene following a flaring incident at the British Petroleum plant in Texas City. Environ Health 13(1):115. https://doi.org/10.1186/1476-069X-13-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Onunogbo CC, Ohaeri OC, Eleazu CO (2012) Effect of mistletoe (Viscum album) extract on the blood glucose, liver enzymes and electrolyte balance in alloxan induced diabetic rats. Am J Biochem Mol Biol 3(1):143–50. https://doi.org/10.3923/ajbmb.2013.143.150

    Article  Google Scholar 

  18. Çavuşoğlu K, Yalçın E, Yapar K, Oruç E, Gür B, Çiçek F (2015) The effects of grape seed extract against toxicity of benzene on liver and kidney tissues of albino mice: biochemical evaluation. Turk J Biochem 40(1):66–73. https://doi.org/10.5505/tjb.2015.22448

    Article  Google Scholar 

  19. Jarsiah P, Nosrati A, Alizadeh A, Hashemi-Soteh SM (2017) Hepatotoxicity and ALT/AST enzymes activities change in therapeutic and toxic doses consumption of acetaminophen in rats. Int Biol Biomed J 3(3):119–124

    CAS  Google Scholar 

  20. Adeyemi O, Ajayi JO, Olajuyin AM, Oloyede OB, Oladiji AT, Oluba OM, Adeyemi O, Ololade IA, Adebayo EA (2009) Toxicological evaluation of the effect of water contaminated with lead, phenol and benzene on liver, kidney and colon of Albino rats. Food Chem Toxicol 47(4):885–7. https://doi.org/10.1016/j.fct.2009.01.023

    Article  CAS  PubMed  Google Scholar 

  21. Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P (2017) Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother. 93:779–87. https://doi.org/10.1016/j.biopha.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Halim AB, El-Ahmady O, Hassab-Allah S, Abdel-Galil F, Hafez Y, Darwish A (1997) Biochemical effect of antioxidants on lipids and liver function in experimentally induced liver damage. Ann Clin Biochem 34(6):656–63. https://doi.org/10.1177/000456329703400610

    Article  CAS  PubMed  Google Scholar 

  23. Alshareef A, Ibrahim M (2020) Neurological and biological toxicity of subchronic exposure to inhaled benzene in male rats. J Biochem Technol 11(2):52–9

    CAS  Google Scholar 

  24. Hemilä H (1992) Vitamin C and plasma cholesterol. Crit Rev Food Sci Nutr 32(1):33–57

    Article  PubMed  Google Scholar 

  25. Aluwong T, Ayo JO, Kpukple A, Oladipo OO (2016) Amelioration of hyperglycaemia, oxidative stress and dyslipidaemia in alloxan-induced diabetic wistar rats treated with probiotic and vitamin C. Nutrients 8(5):151

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mozos I, Stoian D, Luca CT (2017) Crosstalk between vitamins A, B12, D, K, C, and E status and arterial stiffness. Dis Markers 2017:8784971. https://doi.org/10.1155/2017/8784971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emmanuel MO, Okwandu N, Dongo B (2015) Comparative effects of vitamin C and vitamin E pre-treatment in acute paracetamol induced toxicity on the liver of rats. World J Pharm Sci 2:407–12

    Google Scholar 

  28. Amin KA, Hameid HA II, AbdElsttar AH (2010) Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem Toxicol 48(10):2994–2999. https://doi.org/10.1016/j.fct.2010.07.039

    Article  CAS  PubMed  Google Scholar 

  29. Emara AM, El-Bahrawy H (2008) Green tea attenuates benzene-induced oxidative stress in pump workers. J Immunotoxicol 5(1):69–80. https://doi.org/10.1080/15476910802019029

    Article  PubMed  Google Scholar 

  30. Kim SH, Kim JH, Park MA, Hwang SD, Kang JC (2015) The toxic effects of ammonia exposure on antioxidant and immune responses in Rockfish, Sebastesschlegelii during thermal stress. Environ Toxicol Pharmacol 40(3):954–9. https://doi.org/10.1016/j.etap.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B (2021) Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother 1(139):111588. https://doi.org/10.1016/j.biopha.2021.111588

    Article  CAS  Google Scholar 

  32. Sargazi S, Galavi H, Zarei S (2018) Evaluation of attenuative effect of tert-butylhydroquinone against diazinon-induced oxidative stress on hematological indices in male Wistar rats. Biomed Rep 8(6):565–70. https://doi.org/10.3892/br.2018.1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laouar A, Klibet F, Bourogaa E, Benamara A, Boumendjel A, Chefrour A, Messarah M (2017) Potential antioxidant properties and hepatoprotective effects of Juniperusphoenicea berries against CCl4 induced hepatic damage in rats. Asian Pac J Trop Med 10(3):263–269

    Article  CAS  PubMed  Google Scholar 

  34. Lowry O, Rosebrough N, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–75. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  35. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–74

    Article  CAS  PubMed  Google Scholar 

  36. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8

    Article  CAS  PubMed  Google Scholar 

  37. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–94. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  38. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46(2):639–53

    Article  CAS  PubMed  Google Scholar 

  39. Rehncrona S, Smith DS, Åkesson B, Westerberg E, Siesjö BK (1980) Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+-and ascorbic acid-stimulated lipid peroxidation in vitro. J Neurochem 34(6):1630–1638

    Article  CAS  PubMed  Google Scholar 

  40. Suvarna KS, Layton C, Bancroft JD (eds) (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier, London

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges Institutional Biotech Hub, Department of Biophysics, Pub Kamrup College, Baihata Chariali, Kamrup for support received to conduct a part of the enzymatic assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuj Kr. Bharali.

Ethics declarations

Conflict of interest

Ritu Mishra, Karabi Dutta and Manuj Kr. Bharali declare that we have no conflictof interest.

Ethical approval

The experiment protocols were approved by IAEC, Gauhati University, Guwahati. (IAEC/Per/2018-19/PP-IAEC/2018-19/48).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Dutta, K. & Bharali, M.K. L-ascorbic acid and α-tocopherol treatment alleviates parabenzoquinone-induced hemato-biochemical and histopathological changes in Wistar rats. Toxicol. Environ. Health Sci. 14, 379–387 (2022). https://doi.org/10.1007/s13530-022-00152-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00152-7

Keywords

Navigation