Skip to main content
Log in

Nanotoxicological investigations of cocoa pod husk extract-mediated silver nanoparticles in selected tissues of albino rats

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

The applications of silver nanoparticles in household and biomedical products have become widespread, with scanty information on effects of biogenic nanoparticles on the living system. This work investigated the effects of cocoa pod husk extract-mediated silver nanoparticles (CPHE-AgNPs) on tissues of albino rats.

Methods

Twelve female albino rats were randomly assigned to three groups of four rats each and treated once daily with distilled water, 50 µg/mL, and 100 µg/mL of CPHE-AgNPs intraperitoneally for fourteen days. Activities of selected enzymes were monitored in the serum, liver, kidney and heart. Hepatic and renal function indices, lipid profile, organ-body weight ratios, Hb, PCV and organ histoarchitectural examination were also carried out.

Results

There were significant (p < 0.05) elevations in the heart ALP, liver GGT and AST, serum albumin, creatinine and Na + and K + in response to CPHE-AgNPs treatment. The nanoparticles also caused significant (p < 0.05) reductions in liver ALT and ALP, serum AST, ALP and creatine kinase (CK), liver and heart protein, and serum conjugated bilirubin. However, there were no significant (p > 0.05) changes in serum ALT and GGT, heart aminotransferases and CK, all kidney enzymes, serum total protein, total bilirubin, urea, uric acid, Cl- and lipids. Liver and kidney protein, Hb, PCV, tissue-body weight ratios and histoarchitecture of the organs were also not affected.

Conclusions

This study concludes that CPHE-AgNPs i.p. for fourteen days at 50 and 100 µg/mL exhibited mild hepatic, renal and cardiac cellular toxicities, with functional toxicity of the liver and kidney; an information which may guide safe use of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    PubMed  PubMed Central  Google Scholar 

  2. Fard JK, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharma Bull 5(4):447–454

    CAS  Google Scholar 

  3. Li X, Wang L, Fan Y, Feng Q, Cui F (2012) Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. https://doi.org/10.1155/2012/548389

    Article  Google Scholar 

  4. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11

    PubMed  PubMed Central  Google Scholar 

  5. Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman Z-U, Farmanullah F, Huo L-J (2017) Toxicity of nanoparticles on the reproductive system in animal models: a review. Front Pharmacol 8:606. https://doi.org/10.3389/fphar.2017.00606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lateef A, Adelere IA, Gueguim-Kana EB, Asafa TB, Beukes LS (2015) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35

    CAS  Google Scholar 

  7. Lateef A, Ojo SA, Akinwale AS, Azeez L, Gueguim-Kana EB, Beukes LS (2015) Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia 70(10):1295–1306

    CAS  Google Scholar 

  8. Lateef A, Ojo SA, Elegbede JA, Azeez MA, Yekeen TA, Akinboro A (2017) Evaluation of some biosynthesized silver nanoparticles for biomedical applications: hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J Cluster Sci 28:1379–1392

    CAS  Google Scholar 

  9. Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotech Rev 5(6):567–587

    CAS  Google Scholar 

  10. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS (2016) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J Taibah Univ Sci 10:551–562

    Google Scholar 

  11. Lateef A, Ojo SA, Oladejo SM (2016) Anti-candida, anti-coagulant and thrombolytic activities of biosynthesized silver nanoparticles using cell-free extract of Bacillus safensis LAU 13. Process Biochem 51:1406–1412

    CAS  Google Scholar 

  12. Lateef A, Akande MA, Azeez MA, Ojo SA, Folarin BI, Gueguim-Kana EB, Beukes LS (2016) Phytosynthesis of silver nanoparticles (AgNPs) using miracle fruit plant (Synsepalum dulcificum) for antimicrobial, catalytic, anticoagulant, and thrombolytic applications. Nanotech Rev 5(6):507–520

    CAS  Google Scholar 

  13. Lateef A, Ojo SA, Elegbede JA (2016) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotech Rev 5(6):601–622

    CAS  Google Scholar 

  14. Ojo SA, Lateef A, Azeez MA, Oladejo SM, Akinwale AS, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2016) Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Trans Nanobiosci 15(5):433–442

    Google Scholar 

  15. Azeez L, Lateef A, Adebisi SA (2017) Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl Nanosci 7:59–66

    CAS  Google Scholar 

  16. Azeez L, Lateef A, Wahab AA, Rufai MA, Salau AK, Ebenezer AIO, Ajayi M, Adegbite AM, Adebisi B (2019) Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: its antiphytopathogenic and hepatoprotective potentials. Plant Physiol Biochem 136:109–117

    CAS  PubMed  Google Scholar 

  17. Azeez L, Salau AK, Ogunbode SM (2021) Immobilization efficiency and modulating abilities of silver nanoparticles on biochemical and nutritional parameters in plants: possible mechanisms. In: Abd-Elsalam KA (ed) Nanobiotechnology for plant protection, silver nanomaterials for agri-food applications. Elsevier, India, pp 235–264

    Google Scholar 

  18. Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR (2017) Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B Biol 173:250–257

    CAS  Google Scholar 

  19. Olajire AA, Abidemi JJ, Lateef A, Benson NU (2017) Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. J Environ Chem Eng 5:147–159

    CAS  Google Scholar 

  20. Badmus JA, Oyemomi SA, Adedosu OT, Yekeen TA, Azeez MA, Adebayo EA, Lateef A, Badeggi UM, Botha S, Hussein AA, Marnewick JL (2020) Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 6(11):e05413. https://doi.org/10.1016/j.heliyon.2020.e05413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    CAS  PubMed  Google Scholar 

  22. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology (Review). J Internal Med 267:89–105

    PubMed  Google Scholar 

  23. Krug HF, Wick P (2011) Nanotoxicology: An interdisciplinary challenge. Angew Chem Int Ed 50:1260–1278

    CAS  Google Scholar 

  24. Ogunsuyi OI (2019) Cytogenetic and systemic toxicity induced by silver and copper(II)oxide nanoparticles and their mixture in the somatic cells of three eukaryotic organisms. Thesis (PhD). University of Ibadan, Nigeria.

  25. Fadoju OM, Osinowo OA, Ogunsuyi OI, Oyeyemi IT, Alabi OA, Alimba CG, Bakare AA (2020) Interaction of titanium dioxide and zinc oxide nanoparticles induced cytogenotoxicity in Allium cepa. Nucleus 63:159–166

    Google Scholar 

  26. Yekeen TA, Azeez MA, Lateef A, Asafa TB, Oladipo IC, Badmus JA, Adejumo SA, Ajibola AA (2017) Cytogenotoxicity potentials of cocoa pod and bean-mediated green synthesized silver nanoparticles on Allium cepa cells. Caryol Int J Cytol Cytosyst Cytogenet 70(4):366–377

    Google Scholar 

  27. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occupat Environ Med 61:727–728

    CAS  Google Scholar 

  28. Salau AK, Yakubu MT, Oladiji AT (2018) Effects of Anogeissus leiocarpus root barks on rat liver, kidney and haematological parameters. Toxicol Int 25(2):109–115

    Google Scholar 

  29. Nakkalaa JR, Mataa R, Rajab K, Chandra BK, Sadras SR (2018) Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C 91:372–381

    Google Scholar 

  30. Ogunbode SM, Salau AK, Azeez L, Osineye SO, Olaogun OO, Adebisi JO, Akinlade HO, Isa FO (2018) Carcass characteristics and selected tissue enzyme activities of birds injected with cocoa pod husk extract-mediated silver nanoparticles (CPHE-AgNPs) at day old. Sci Focus 23(2):81–90

    Google Scholar 

  31. Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Coll Surf A Physicochem Eng Asp 439:184–192

    CAS  Google Scholar 

  32. Adeyemi OS, Adewumi I (2014) Biochemical evaluation of silver nanoparticles in Wistar rats. Int Scholarly Res Notices 2014:196091

    Google Scholar 

  33. Naguib M, Mahmoud UM, Mekkawy IA, Sayed AE-DH (2020) Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicol Rep 7:133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pourhamzeh M, Mahmoudian ZG, Saidijam M, Asari MJ, Alizadeh Z (2016) The effect of silver nanoparticles on the biochemical parameters of liver function in serum, and the expression of caspase-3 in the liver tissues of male rats. Avicenna J Med Biochem 4(2):e35557

    Google Scholar 

  35. Salau AK, Yakubu MT, Oladiji AT (2018) Effects of 1:1 mixture of Anogeissus leiocarpus and Terminalia avicennioides root bark extracts on haematological parameters, liver and kidney function indices of male rats. Iran J Toxicol 12(5):41–45

    CAS  Google Scholar 

  36. Sulaiman FA, Adeyemi OS, Akanji MA, Oloyede HOB, Sulaiman AA, Olatunde A, Hoseni AA, Olowolafe YV, Nlebedim RN, Muritala H, Nafiu MO, Salawu MO (2015) Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. J Acute Med 5:96–102

    Google Scholar 

  37. Wall J, Seleci DA, Schworm F, Neuberger R, Link M, Hufnagel M, Schumacher P, Schulz F, Heinrich U, Wohlleben W, Hartwig A (2022) Comparison of metal-based nanoparticles and nanowires: solubility, reactivity, bioavailability and cellular toxicity. Nanomaterials 12:147. https://doi.org/10.3390/nano12010147

    Article  CAS  Google Scholar 

  38. Roda E, Bottone MG, Biggiogera M, Milanesi G, Coccini T (2019) Pulmonary and hepatic effects after low dose exposure to nanosilver: early and long-lasting histological and ultrastructural alterations in rat. Toxicol Rep 6:1047–1060

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh A, Dar MY, Joshi B, Sharma B, Shrivastava S, Shukla S (2018) Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol Rep 5:333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS (2016) Cocoa pod husk extract mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostruct Chem 6(2):159–169

    CAS  Google Scholar 

  41. Reitman S, Frankel S (1957) A colorimetric method for the determination of glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  42. Tietz NW (1994) Textbook of clinical chemistry, 2nd edn. WB Saunders Co., Philadelphia, pp 717–723

    Google Scholar 

  43. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and measurement of serum album with bromocresol green. Clin Chem Acta 31:87

    CAS  Google Scholar 

  44. Evelyn KA, Malloy HT (1938) Micro determination of oxyhaemoblobin, methaemoglobin and sulphaemoglobin in a single sample of blood. J Biol Chem 126:655–661

    CAS  Google Scholar 

  45. Wright PJ, Leathwood PD, Plummer DT (1972) Enzymes in rat urine: alkaline phosphatase. Enzymologia 42:317–327

    CAS  PubMed  Google Scholar 

  46. Blass KG, Thierbert RJ, Lam LK (1974) A study of the mechanism of the Jaffe reaction. J Clin Chem Clin Biochem 12:336–343

    CAS  Google Scholar 

  47. Veniamin MP, Vakirtzi C (1970) Chemical basis of the carbamido diacetyl micromethod for estimation of urea, citrulline and carbamyl derivatives. Clin Chem 16:3–6

    CAS  PubMed  Google Scholar 

  48. Henry RJ, Cannon DC, Winkleman JW (1974) Clinical chemistry, principles and techniques. Harper and Row 2nd edn.

  49. Folch J, Lees M, Sloane SGH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  50. Ibrahim ATA (2020) Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. J Trace Elements Med Biol 61:126507

    CAS  Google Scholar 

Download references

Acknowledgements

This project did not receive any specific grant from funding agencies. The authors wish the appreciate the Nanotechnology Research Group (NANO +), Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria for donating the CPHE-AgNPs used in this study. The authors also wish to appreciate all Laboratory Staff of Fountain University, Osogbo, Osun State, Nigeria for their assistance. Muneerah Muhammad, Fasilat Salako and Aishah Adisa are also appreciated for their contributions to the experimental procedure during their industrial training in the Laboratory Unit of Fountain University, Osogbo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadu Kayode Salau.

Ethics declarations

Conflict of interest

A. K. Salau, S. O. Osineye and A. Lateef declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants. Statements on ethical approval for animal studies are in the materials and methods section.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salau, A.K., Osineye, S.O. & Lateef, A. Nanotoxicological investigations of cocoa pod husk extract-mediated silver nanoparticles in selected tissues of albino rats. Toxicol. Environ. Health Sci. 14, 193–202 (2022). https://doi.org/10.1007/s13530-022-00129-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-022-00129-6

Keywords

Navigation