Skip to main content
Log in

The polycyclic aromatic hydrocarbons (PAHs)-induced toxicity in asphalt workers neutrophils through induction of oxidative stress

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective

Asphalt is known as an important source of exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are one of the major concerns of the workplace and the scientific community, and have high stability and various toxicity effects.

Methods

Since asphalt workers are exposed to PAHs, this study was designed to evaluate the exposure of asphalt workers to PAHs and oxidative stress in neutrophils isolated from the workers.

Results

Results showed that exposure of asphalt workers with different PAHs is lower than the standard set. The level of reactive oxygen species (ROS), lipid peroxidation (LPO), and glutathione disulfide (GSSG) in neutrophils isolated from the blood of asphalt workers were significantly higher than the normal group. Glutathione (GSH) levels and GSH/GSSG ratio in neutrophils isolated from the blood of asphalt workers were significantly lower than in the normal group.

Conclusion

Results suggest that due to the lower level of exposure to PAHs compared to the standard level, the level of oxidative stress in these workers is high. Based on the toxic effects and the lack of a standard level for some PAHs, the use of personal protective equipment and the use of antioxidants is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brudi LC, Adolfo FR, do Nascimento PC, Cargnin RS, Bohrer D, de Carvalho LM et al (2020) Emission and collection of polycyclic aromatic hydrocarbons from raw asphalt samples heated at 130 °C. Energy Fuels 34:11248–11257

    Article  CAS  Google Scholar 

  2. Chong D, Wang Y, Zhao K, Wang D, Oeser M (2018) Asphalt fume exposures by pavement construction workers: current status and project cases. J Constr Eng Manag 144:05018002

    Article  Google Scholar 

  3. Song M, Lee K, Oh S-H, Bae M-S (2020) Impact of polycyclic aromatic Hydrocarbons (PAHs) from an asphalt mix plant in a suburban residential area. Appl Sci 10:4632

    Article  CAS  Google Scholar 

  4. Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50:395–403. https://doi.org/10.1093/annhyg/mel010

    Article  CAS  PubMed  Google Scholar 

  5. Yu Y, Peng M, Liu Y, Ma J, Wang N, Ma S et al (2021) Co-exposure to polycyclic aromatic hydrocarbons and phthalates and their associations with oxidative stress damage in school children from South China. J Hazard Mater 401:123390. https://doi.org/10.1016/j.jhazmat.2020.123390

    Article  CAS  PubMed  Google Scholar 

  6. Deng Q, Dai X, Feng W, Huang S, Yuan Y, Xiao Y et al (2019) Co-exposure to metals and polycyclic aromatic hydrocarbons, microRNA expression, and early health damage in coke oven workers. Environ Int 122:369–380. https://doi.org/10.1016/j.envint.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  7. Jain RB (2020) Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. Environ Pollut 266:115178. https://doi.org/10.1016/j.envpol.2020.115178

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Xu X, Zeng Z, Zheng X, Ye K, Huo X (2020) Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. Sci Total Environ 732:138944. https://doi.org/10.1016/j.scitotenv.2020.138944

    Article  CAS  PubMed  Google Scholar 

  9. Kuang D, Zhang W, Deng Q, Zhang X, Huang K, Guan L et al (2013) Dose-response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers. Environ Sci Technol 47:7446–7456. https://doi.org/10.1021/es401639x

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira M, Costa S, Vaz J, Fernandes A, Slezakova K, Delerue-Matos C et al (2020) Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. J Hazard Mater 383:121179. https://doi.org/10.1016/j.jhazmat.2019.121179

    Article  CAS  PubMed  Google Scholar 

  11. Guan X, Fu W, Wei W, Li G, Wu X, Bai Y et al (2020) Mediation of the association between polycyclic aromatic hydrocarbons exposure and telomere attrition by oxidative stress: a prospective cohort study. J Hazard Mater 399:123058. https://doi.org/10.1016/j.jhazmat.2020.123058

    Article  CAS  PubMed  Google Scholar 

  12. Miglani K, Kumar S, Yadav A, Aggarwal N, Ahmad I, Gupta R (2019) A multibiomarker approach to evaluate the effect of polyaromatic hydrocarbon exposure on oxidative and genotoxic damage in tandoor workers. Toxicol Ind Health 35:486–496. https://doi.org/10.1177/0748233719862728

    Article  CAS  PubMed  Google Scholar 

  13. Peng M, Lu S, Yu Y, Liu S, Zhao Y, Li C et al (2020) Urinary monohydroxylated polycyclic aromatic hydrocarbons in primiparas from Shenzhen, South China: Levels, risk factors, and oxidative stress. Environ Pollut 259:113854. https://doi.org/10.1016/j.envpol.2019.113854

    Article  CAS  PubMed  Google Scholar 

  14. Rapisarda V, Carnazza ML, Caltabiano C, Loreto C, Musumeci G, Valentino M et al (2009) Bitumen products induce skin cell apoptosis in chronically exposed road pavers. J Cutan Pathol 36:781–787. https://doi.org/10.1111/j.1600-0560.2008.01140.x

    Article  PubMed  Google Scholar 

  15. Yazdani M (2020) Comparative toxicity of selected PAHs in rainbow trout hepatocytes: genotoxicity, oxidative stress and cytotoxicity. Drug Chem Toxicol 43:71–78. https://doi.org/10.1080/01480545.2018.1497054

    Article  CAS  PubMed  Google Scholar 

  16. Ekici E, Güney M, Nazıroğlu M (2020) Protective effect of cabergoline on mitochondrial oxidative stress-induced apoptosis is mediated by modulations of TRPM2 in neutrophils of patients with endometriosis. J Bioenerg Biomembr 52:131–142. https://doi.org/10.1007/s10863-020-09830-y

    Article  CAS  PubMed  Google Scholar 

  17. Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S et al (2019) Interplay between microRNAs and oxidative stress in ovarian conditions with a focus on ovarian cancer and endometriosis. Int J Mol Sci. https://doi.org/10.3390/ijms20215322

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dogru A, Nazıroglu M, Cig B (2019) Modulator role of infliximab and methotrexate through the transient receptor potential melastatin 2 (TRPM2) channel in neutrophils of patients with rheumatoid arthritis: a pilot study. Arch Med Sci 15:1415–1424. https://doi.org/10.5114/aoms.2018.79485

    Article  CAS  PubMed  Google Scholar 

  19. Köse SA, Nazıroğlu M (2014) Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol Trace Elem Res 158:136–142. https://doi.org/10.1007/s12011-014-9929-3

    Article  CAS  PubMed  Google Scholar 

  20. Vitte J, Michel BF, Bongrand P, Gastaut JL (2004) Oxidative stress level in circulating neutrophils is linked to neurodegenerative diseases. J Clin Immunol 24:683–692. https://doi.org/10.1007/s10875-004-6243-4

    Article  PubMed  Google Scholar 

  21. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L (2018) Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 175:1279–1292

    Article  CAS  Google Scholar 

  22. Collin F (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int J Mol Sci 20:2407

    Article  Google Scholar 

  23. Reczek CR, Chandel NS (2018) ROS promotes cancer cell survival through calcium signaling. Cancer Cell 33:949–951

    Article  CAS  Google Scholar 

  24. Gaikwad AS, Mahmood R, Ravichandran B, Kondhalkar S (2020) Evaluation of telomere length and genotoxicity among asphalt associated workers. Mutat Res Genet Toxicol Environ Mutagen 858:503255

    Article  Google Scholar 

  25. Fostinelli J, Madeo E, Toraldo E, Sarnico M, Luzzana G, Tomasi C et al (2018) Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy. Toxicol Lett 298:134–140

    Article  CAS  Google Scholar 

  26. Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N (2018) Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 14:47–58

    Article  CAS  Google Scholar 

  27. Wei Z, Li X, Li X, Liu Q, Cheng Y (2018) Oxidative stress in Parkinson’s disease: a systematic review and meta-analysis. Front Mol Neurosci 11:236

    Article  Google Scholar 

  28. Banerjee S, Ghosh S, Mandal A, Ghosh N, Sil PC (2020) ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol 94:2293–2317

    Article  CAS  Google Scholar 

  29. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383

    Article  CAS  Google Scholar 

  30. Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG (2020) Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: a dose-dependent phenomenon. Redox Biol 36:101606

    Article  Google Scholar 

  31. Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9:472

    Article  CAS  Google Scholar 

  32. Paris L, Roussel M, Pereira B, Delbac F, Diogon M (2017) Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microb Biotechnol 10:1702–1717

    Article  CAS  Google Scholar 

  33. Angelova PR, Esteras N, Abramov AY (2021) Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev 41:770–784

    Article  CAS  Google Scholar 

  34. Jambunathan N (2010) In: Plant stress tolerance, pp 291–297. Springer

  35. Zhang S, He Y, Sen B, Wang G (2020) Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol 307:123234

    Article  CAS  Google Scholar 

  36. Er R, Aydın B, Şekeroğlu V, Atlı Şekeroğlu Z (2020) Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers 25:458–467

    Article  CAS  Google Scholar 

  37. Zhang L, Yang L, Zhou Q, Zhang X, Xing W, Wei Y et al (2020) Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: a review. J Environ Sci (China) 88:370–384. https://doi.org/10.1016/j.jes.2019.09.007

    Article  Google Scholar 

  38. Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J et al (2012) Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4:1247–1253

    Article  CAS  Google Scholar 

  39. Owen JB, Butterfield DA (2010) Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 648:269–277. https://doi.org/10.1007/978-1-60761-756-3_18

    Article  CAS  PubMed  Google Scholar 

  40. Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 217:2291–2298. https://doi.org/10.1083/jcb.201804161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim SJ, Jung HJ, Hyun DH, Park EH, Kim YM, Lim CJ (2010) Glutathione reductase plays an anti-apoptotic role against oxidative stress in human hepatoma cells. Biochimie 92:927–932. https://doi.org/10.1016/j.biochi.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Wu J, Wang K, Xu H, Qu M, Gao Z et al (2021) Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 224:121852. https://doi.org/10.1016/j.talanta.2020.121852

    Article  CAS  PubMed  Google Scholar 

  43. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M (2020) Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. https://doi.org/10.3390/biom10101429

    Article  PubMed  PubMed Central  Google Scholar 

  44. Oh H, Siano B, Diamond S (2008) Neutrophil isolation protocol. J Vis Exp. https://doi.org/10.3791/745

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seydi E, Salimi A, Rasekh HR, Mohsenifar Z, Pourahmad J (2018) Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting. Nutr Cancer 70:594–604

    Article  CAS  Google Scholar 

  46. Beach DC, Giroux E (1992) Inhibition of lipid peroxidation promoted by iron (III) and ascorbate. Arch Biochem Biophys 297:258–264

    Article  CAS  Google Scholar 

  47. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Alborz University of Medical Sciences, Karaj, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enayatollah Seydi.

Ethics declarations

Conflict of interest

Asghar Ghahri, Pouria Seydi, Fatemeh Khademi, Hannaneh Zakersani, Enayatollah Seydi declare that they have no conflict of interest.

Ethical approval

The experimental protocols involved in the study were approved by the University of Alborz (Karaj, Iran) Ethical Committee with approval number: IR.ABZUMS.REC.1399.059.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahri, A., Seydi, P., Khademi, F. et al. The polycyclic aromatic hydrocarbons (PAHs)-induced toxicity in asphalt workers neutrophils through induction of oxidative stress. Toxicol. Environ. Health Sci. 13, 389–396 (2021). https://doi.org/10.1007/s13530-021-00106-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00106-5

Keywords

Navigation