Skip to main content
Log in

Genetic Biomarkers and Their Applications to Prevent Occupational Diseases: A Literature Review

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective and Methods

Understanding the role genetics plays in diseases that are acquired as a result of workplace exposures and the interaction between genes and workplace-environmental factors is extremely important. The reason genetic research has become relevant with regard to occupational health is due to the enormous technological advances in molecular biology and genetics in recent years. Literature searches were performed using the many sites including PubMed, Google Scholar, ScienceDirect, and further refined by reviewing titles, abstracts, and references in the bibliography to confirm additional missing case reports.

Results and Conclusion

The purpose of this review is to consolidate the diverse literatures on genetics in the workplace. Focusing on maintaining a healthy workplace, it can change from controlling the environment to excluding vulnerable workers. Testing of genes should only be done with workers’ agree and with the employee controlling access to that information. Although genetic testing has the potential to improve worker health and reduce occupational diseases, there are some concerns regarding clinical relevance, such as autonomy and privacy violations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright, L. Understanding Genetics: A Primer for Occupational Health Practice. AAOHN J. 53, 534–542 (2005).

    PubMed  Google Scholar 

  2. Marchant, G. E. Genomics and toxic substances. Part 2: Genetic susceptibility to environmental agents. Environ. Law Rep. 33, 10641–10667 (2003).

    Google Scholar 

  3. Rachiglio, A. M. et al. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma. Oncotarget 7, 66595–66605 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xia, S. et al. Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls. Lung Cancer 90, 78–84 (2015).

    Article  PubMed  Google Scholar 

  5. Couraud, S. et al. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin. Cancer Res. 20, 4613–4624 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Hicks, J. K., Saller, J., Wang, E., Boyle, T. & Gray, J. E. Cell-free circulating tumor DNA supplementing tissue biopsies for identification of targetable mutations: Implications for precision medicine and considerations for reconciling results. Lung Cancer 111, 135–138 (2017).

    Article  PubMed  Google Scholar 

  7. He, Y. et al. Detection of cancer specific mutations in early-stage non-small cell lung cancer using cell-free DNA by targeted sequencing. Int. J. Oncol. 49, 2351–2358 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Buttitta, F. et al. Effective assessment of EGFR mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin. Cancer Res. 19, 691–698 (2013).

    Article  PubMed  CAS  Google Scholar 

  9. Marchetti, A. et al. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One 7, e42164 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Que, D. et al. EGFR mutation status in plasma and tumor tissues in non-small cell lung cancer serves as a predictor of response to EGFR-TKI treatment. Cancer Biol. Ther. 17, 320–327 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yoon, S. H. et al. Peptide Nucleic Acid Clamping Versus Direct Sequencing for the Detection of EGFR Gene Mutation in Patients with Non-small Cell Lung Cancer. Cancer Res. Treat. 47, 661–669 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Malapelle, U. et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl. Lung Cancer Res. 5, 505–510 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Malapelle, U. et al. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens. Cancer Cytopathology 125, 615–626 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Bartels, S. et al. Molecular Analysis of Circulating Cell-Free DNA from Lung Cancer Patients in Routine Laboratory Practice: A Cross-Platform Comparison of Three Different Molecular Methods for Mutation Detection. J. Mol. Diagn. 19, 722–732 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Bennett, C. W., Berchem, G., Kim, Y. J. & El-Khoury, V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 7, 71013–71035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oxnard, G. R. et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 20, 1698–1705 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pécuchet, N., Legras, A., Laurent-Puig, P. & Blons, H. Lung cancer molecular testing, what role for Next Generation Sequencing and circulating tumor DNA. Ann. Pathol. 36, 80–93 (2016).

    Article  PubMed  Google Scholar 

  18. Pécuchet, N. et al. Base-Position Error Rate Analysis of Next-Generation Sequencing Applied to Circulating Tumor DNA in Non-Small Cell Lung Cancer: A Prospective Study. PLoS Med. 13, doi:10.1371/journal. pmed.1002199 (2016).

  19. Daniels, M. et al. Whole genome sequencing for lung cancer. J. Thorac. Dis. 4, 155–163 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Thompson, J. C. et al. Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA. Clin. Cancer Res. 22, 5772–5782 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tuononen, K. et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of nonsmall cell lung carcinoma-superiority of NGS. Genes Chromosomes Cancer 52, 503–511 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Malapelle, U. et al. Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br. J. Cancer 116, 802–810 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Takase, Y. et al. Highly sensitive detection of a HER2 12-base pair duplicated insertion mutation in lung cancer using the Eprobe-PCR method. PLoS One 12, doi:10.1371/journal.pone.0171225 (2017).

  24. Rouanne, M. et al. Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer. BMC Cancer 16, doi:10.1186/s12885-016-2541-5 (2016).

  25. Meredith, S. L. et al. Irradiation Decreases the Neuroendocrine Biomarker Pro-Opiomelanocortin in Small Cell Lung Cancer Cells In Vitro and In Vivo. PLoS One 11, doi:10.1371/journal.pone.0148404 (2016).

  26. Lou, T. F. et al. Cancer-Specific Production of N-Acetylaspartate via NAT8L Overexpression in Non-Small Cell Lung Cancer and Its Potential as a Circulating Biomarker. Cancer Prev. Res. (Phila) 9, 43–52 (2016).

    Article  CAS  Google Scholar 

  27. Lococo, F. et al. Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 16, 19612–19630 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gumireddy, K. et al. AKAP4 is a circulating biomarker for non-small cell lung cancer. Oncotarget 6, 17637–17647 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Edelman, M. J. et al. GP88 (progranulin): a novel tissue and circulating biomarker for non-small cell lung carcinoma. Hum. Pathol. 45, 1893–1899 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Higgins, G. et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc. Natl. Acad. Sci. USA. 109, E3128–E3135 (2012).

    Article  PubMed  Google Scholar 

  31. Kim, S. J., Kim, E. & Rim, K. T. Non-invasive quantification of cell-free DNA mutations in plasma during lung tumor progression in mice. Cancer Biomark. 20, 477–485 (2017).

    Article  PubMed  CAS  Google Scholar 

  32. Paweletz, C. P. et al. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients. Clin. Cancer Res. 22, 915–922 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Ohira, T. et al. Tumor volume determines the feasibility of cell-free DNA sequencing for mutation detection in non-small cell lung cancer. Cancer Sci. 107, 1660–1666 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yang, X. et al. Quantification of mutant alleles in circulating tumor DNA can predict survival in lung cancer. Oncotarget 7, 20810–20824 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Xu, X. et al. Assessment of the clinical application of detecting EGFR, KRAS, PIK3CA and BRAF mutations in patients with non-small cell lung cancer using next-generation sequencing. Scand. J. Clin. Lab. Invest. 76, 386–392 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Jamal-Hanjani, M. et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann. Oncol. 27, 862–867 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Borsu, L. et al. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples. J. Mol. Diagn. 18, 903–911 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ma, M. et al. Comparison of plasma and tissue samples in epidermal growth factor receptor mutation by ARMS in advanced non-small cell lung cancer. Gene 591, 58–64 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Cui, S. et al. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget 8, 2771–2780 (2017).

    PubMed  Google Scholar 

  40. Su, D. et al. High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods. J. Exp. Clin. Cancer Res. 36, 121 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Seki, Y. et al. Picoliter-Droplet Digital Polymerase Chain Reaction-Based Analysis of Cell-Free Plasma DNA to Assess EGFR Mutations in Lung Adenocarcinoma That Confer Resistance to Tyrosine-Kinase Inhibitors. Oncologist 21, 156–164 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Health Quality Ontario. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis. Ont. Health Technol. Assess. Ser. 10, 1–48 (2010).

    PubMed Central  Google Scholar 

  43. Won, J. K. et al. Concomitant ALK translocation and EGFR mutation in lung cancer: a comparison of direct sequencing and sensitive assays and the impact on responsiveness to tyrosine kinase inhibitor. Ann. Oncol. 26, 348–354 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Xu, S. et al. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients. Cancer Lett. 370, 324–331 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. Drilon, A. et al. Broad, Hybrid Capture-Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clin. Cancer Res. 21, 3631–3639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Preusser, M. et al. Spectrum of gene mutations detected by next generation exome sequencing in brain metastases of lung adenocarcinoma. Eur. J. Cancer 51, 1803–1811 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Oellerich, M. et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit. Rev. Clin. Lab. Sci. 54, 205–218 (2017).

    Article  PubMed  CAS  Google Scholar 

  48. DiBardino, D. M. et al. Next-generation sequencing of non-small cell lung cancer using a customized, targeted sequencing panel: Emphasis on small biopsy and cytology. Cytojournal 14, doi:10.4103/1742-6413.202602 (2017).

  49. Gao, J. et al. Comparison of Next-Generation Sequencing, Quantitative PCR, and Sanger Sequencing for Mutation Profiling of EGFR, KRAS, PIK3CA and BRAF in Clinical Lung Tumors. Clin. Lab. 62, 689–696 (2016).

    PubMed  CAS  Google Scholar 

  50. Yamamoto, G. et al. Routine genetic testing of lung cancer specimens derived from surgery, bronchoscopy and fluid aspiration by next generation sequencing. Int. J. Oncol. 50, 1579–1589 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hagemann, I. S. et al. Clinical next-generation sequencing in patients with non-small cell lung cancer. Cancer 121, 631–639 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Qin, L., Zhong, W., Zhang, L., Li, L. Y. & Wang, M. Z. Comparison of three methods for detecting epidermal growth factor receptor mutations in plasma DNA samples of Chinese patients with advanced non-small cell lung cancer. Chin. Med. J. (Engl.) 124, 887–891 (2011).

    CAS  Google Scholar 

  53. Han, J. Y. et al. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma. Lung Cancer 85, 161–167 (2014).

    Article  PubMed  Google Scholar 

  54. Reynolds, J. P. et al. Next-generation sequencing of liquid-based cytology non-small cell lung cancer samples. Cancer 125, 178–187 (2017).

    CAS  Google Scholar 

  55. Kim, H. R. et al. Detection of EGFR mutations in circulating free DNA by PNA-mediated PCR clamping. J. Exp. Clin. Cancer Res. 32, doi:10.1186/1756-9966-32-50 (2013).

  56. Ishii, H. et al. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples. Oncotarget 6, 30850–30858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Youssef, O. et al. Presence of cancer-associated mutations in exhaled breath condensates of healthy individuals by next generation sequencing. Oncotarget 8, 18166–18176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alegre, E. et al. Total and mutated EGFR quantification in cell-free DNA from non-small cell lung cancer patients detects tumor heterogeneity and presents prognostic value. Tumour Biol. 37, 13687–13694 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Marchetti, A. et al. Early Prediction of Response to Tyrosine Kinase Inhibitors by Quantification of EGFR Mutations in Plasma of NSCLC Patients. J. Thorac. Oncol. 10, 1437–1443 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Vanni, I. et al. Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGMTM Platform. Int. J. Mol. Sci. 16, 28765–28782 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang, H. P. et al. Screening for K-ras mutations in colorectal and lung cancers by using a novel real-time PCR with ADx-K-ras kit and Sanger DNA sequencing. Zhonghua Bing Li Xue Za Zhi 39, 757–761 (2010).

    PubMed  CAS  Google Scholar 

  62. Yao, Y. et al. Detection of circulating tumor DNA in patients with advanced non-small cell lung cancer. Oncotarget 8, 2130–2140 (2017).

    PubMed  Google Scholar 

  63. Zhao, X. et al. Combined Targeted DNA Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using UNCseq and NGScopy, and RNA Sequencing Using UNCqeR for the Detection of Genetic Aberrations in NSCLC. PLoS One 10, doi:10.1371/journal.pone.0129280 (2015).

  64. Jiang, B. et al. Serum detection of epidermal growth factor receptor gene mutations using mutant-enriched sequencing in Chinese patients with advanced nonsmall cell lung cancer. J. Int. Med. Res. 39, 1392–1401 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Ludovini, V. et al. Plasma DNA, microsatellite alterations, and p53 tumor mutations are associated with disease-free survival in radically resected non-small cell lung cancer patients: a study of the perugia multidisciplinary team for thoracic oncology. J. Thorac. Oncol. 3, 365–373 (2008).

    Article  PubMed  Google Scholar 

  66. National Research Council (NRC). Applications of toxigenomic technologies to predictive toxicology and risk assessment. Washington, D.C.: National Academies Press (2007).

    Google Scholar 

  67. Wang, Z. et al. Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Env. Health Perspect. 113, 233–241 (2005).

    Article  CAS  Google Scholar 

  68. Toyoshiba, H. et al. Gene interaction network suggests dioxin induces a significant linkage between aryl hydrocarbon receptor and retinoic acid receptor beta. Environ. Health Perspect. 112, 1217–1224 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Song, M.-K., Cho, Y., Jeong, S.-C. & Ryu, J.-C. Analysis of gene expression changes in relation to hepatotoxicity induced by perfluorinated chemicals in a human hepatoma cell line. Toxicol. Environ. Health Sci. 8, 114–127 (2016).

    Article  Google Scholar 

  70. Shostak, S. Locating gene-environment interaction: at the intersections of genetics and public health. Soc. Sci. Med. 56, 2327–2342 (2003).

    Article  PubMed  Google Scholar 

  71. Hagmar, L. et al. Impact of types of lymphocyte chromosomal aberrations on human cancer risk: results from Nordic and Italian cohorts. Cancer Res. 64, 2258–2263 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. Bonassi, S., Znaor, A., Norppa, H. & Hagmar, L. Chromosomal aberrations and risk of cancer in humans: an epidemiological perspective. Cytogenet. Genome Res. 104, 376–382 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. McCanlies, E. C., Kreiss, K., Andrew, M. & Weston, A. HLA-DPB1 and chronic beryllium disease: a HuGE review. Am. J. Epidemiol. 157, 388–398 (2003).

    Article  PubMed  Google Scholar 

  74. Jung, J., Hah, K., Lee, W. & Jang, W. Meta-analysis of microarray datasets for the risk assessment of coplanar polychlorinated biphenyl 77 (PCB77) on human health. Toxicol. Environ. Health Sci. 9, 161–168 (2017).

    Article  Google Scholar 

  75. Genetics and Public Policy Center. Genetic testing practice guidelines: translating genetic discoveries into clinical care, https://doi.org/www.dnapolicy.org/resources/Genetic_Testing_Practice_Guideslines.pdf (2006).

    Google Scholar 

  76. American College of Occupational and Environmental Medicine (ACOEM). Genetic screening in the workplace, https://doi.org/www.acoem.org/guidelines.aspx?id=726 (2005).

    Google Scholar 

  77. McCanlies, E. C. et al. Impact of negatively charged patches on the surface of MHC class II antigen-presenting proteins on risk of chronic beryllium disease. J. R. Soc. Interface 5, 749–758 (2008).

    Article  PubMed  CAS  Google Scholar 

  78. Soleimani, E., Moghadam, R. H. & Ranjbar, A. Occupational exposure to chemicals and oxidative toxic stress. Toxicol. Environ. Health Sci. 7, 1–24 (2015).

    Article  Google Scholar 

  79. Wade, P. A. & Archer, T. K. Epigenetics: environmental instructions for the genome. Environ. Health Perspect. 114, A140-A141 (2006).

  80. Schulte, P. A. The contribution of genetics and genomics to occupational safety and health. Occup. Environ. Med. 64, 717–718 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Koizumi, S. Application of DNA microarrays in occupational health research. J. Occup. Health 46, 20–25 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. Hanash S. Disease proteomics. Nature 422, 226–232 (2003).

    Article  PubMed  CAS  Google Scholar 

  83. Hunter, D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. Barker, R. N. et al. The increase in allergic disease: environment and susceptibility. Proceedings of a symposium held at the Royal Society of Edinburgh. Clin. Exp. Allergy 33, 394–406 (2003).

    Article  Google Scholar 

  85. 74 Federal Register. 9056 [Internet]. Regulation under the genetic information nondiscrimination act of 2008, https://doi.org/edocket.access.gpo.gov/2009/E9-4221.htm (2009).

    Google Scholar 

  86. Boffetta, P. et al. Chromosomal aberrations and cancer risk: Results of a cohort study from central Europe. Am. J. Epidemiol. 165, 36–43 (2007).

    Article  PubMed  Google Scholar 

  87. Bonassi, S. et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28, 625–631 (2007).

    Article  PubMed  CAS  Google Scholar 

  88. Rossner, P. et al. Chromosomal aberration in lymphocytes of healthy subjects and risk of cancer. Env Health Persp. 113, 517–520 (2005).

    Article  Google Scholar 

  89. Geppert, C. M. A. & Roberts, L. W. Ethical issues in the use of genetic information in the workplace: a review of recent developments. Curr. Opin. Psychiatry 18, 518–524 (2005).

    Article  PubMed  Google Scholar 

  90. Holtzman, N. A. Ethical aspects of genetic testing in the workplace. Community Genet. 6, 136–138 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Taek Rim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rim, KT. Genetic Biomarkers and Their Applications to Prevent Occupational Diseases: A Literature Review. Toxicol. Environ. Health Sci. 10, 147–156 (2018). https://doi.org/10.1007/s13530-018-0358-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-018-0358-0

Keywords

Navigation