Skip to main content
Log in

The mechanism of hepatotoxic effects of sodium nitrite on isolated rat hepatocytes

  • Original Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Nitrite and nitrite are considered hazardous, and there are legal limits to their concentration in food and drinking water. The typical diet in most countries contains nitrites, nitrites, and nitrosamines. It is used as a food preservative, especially in cured meats. In this research, we investigated the cytotoxic mechanisms of sodium nitrite in isolated hepatocyte. For this purpose, we evaluated the several oxidative stress markers. The results showed that the cytotoxicity of sodium nitrite on hepatocytes was associated with reactive oxygen species (ROS) formation and lipid peroxidation which were inhibited by antioxidants and ROS scavengers, mitochondrial permeability transition, pore sealing agents and endocytosis inhibitors. Sodium nitrite cytotoxicity was also associated with mitochondrial injury, lysosomal membrane rupture and release of digestive proteases which were prevented by antioxidants, mitochondrial permeability transition (MPT) pore sealing agents and lysosomotropic agents. In conclusion, sodium nitrite at concentration of 5 mM could have cytotoxic effects on isolated rat hepatocytes by above mentioned mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury, K. E., Appleby, P. N. & Key, T. J. Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Am. J. Clin. Nutr. 100 Suppl 1, 394S–398S (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez, C. A. et al. Fruit and vegetable intake and the risk of gastric adenocarcinoma: a reanalysis of the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study after a longer follow-up. Int. J. Cancer. 131, 2910–2919 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Ward, M. H., Heineman, E. F., McComb, R. D. & Weisenburger, D. D. Drinking water and dietary sources of nitrate and nitrite and risk of glioma. J. Occup. Environ. Med. 47, 1260–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Li, Z. W., Ren, A. G., Guan, L. X. & Li, Z. [Nitrate and nitrite contents of drinking water in some areas of Shanxi Province]. Wei. Sheng. Yan. Jiu. 35, 217–218 (2006).

    CAS  PubMed  Google Scholar 

  5. Sungur, S. & Atan, M. M. Determination of nitrate, nitrite and perchlorate anions in meat, milk and their products consumed in Hatay region in Turkey. Food. Addit. Contam. Part B. Surveill. 6, 6–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Yalcin, S. & Yalcin, S. S. Nitrate and nitrite content of meat products. Arch. Dis. Child. 79, 198 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gotterup, J. et al. Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system. Int. J. Food. Microbiol. 120, 303–310 (2007).

    Article  PubMed  Google Scholar 

  8. Budayova, E. Effects of sodium nitrite and potassium sorbate on in vitro cultured mammalian cells. Neoplasma 32, 341–350 (1985).

    CAS  PubMed  Google Scholar 

  9. Sun, J., Aoki, K., Wang, W., Guo, A. & Misumi, J. Sodium nitrite-induced cytotoxicity in cultured human gastric epithelial cells. Toxicol. In Vitro. 20, 1133–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wary, K. K. & Sharan, R. N. Cytotoxic and cytostatic effects of arecoline and sodium nitrite on human cells in vitro. Int. J. Cancer. 47, 396–400 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Pourahmad, J. et al. A new approach on valproic acid induced hepatotoxicity: involvement of lysosomal membrane leakiness and cellular proteolysis. Toxicol. In Vitro. 26, 545–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Pourahmad, J., Mortada, Y., Eskandari, M. R. & Shahraki, J. Involvement of Lysosomal Labilisation and Lysosomal/mitochondrial Cross-Talk in Diclofenac Induced Hepatotoxicity. Iran. J. Pharm. Res. 10, 877–887 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Craddock, V. M. Nitrosamines, food and cancer: assessment in Lyon. Food. Chem. Toxicol. 28, 63–65 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Griesenbeck, J. S. et al. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the short willet food frequency questionnaire. Nutr. J. 8, 16 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu, J., Arcot, J. & Lee, N. A. Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians. Food. Chem. 115, 334–339 (2009).

    Article  CAS  Google Scholar 

  16. Machha, A. & Schechter, A. N. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits. Eur. J. Nutr. 50, 293–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varraso, R., Jiang, R., Barr, R. G., Willett, W. C. & Camargo, C. A., Jr. Prospective study of cured meats consumption and risk of chronic obstructive pulmonary disease in men. Am. J. Epidemiol. 166, 1438–1445 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang, R. et al. Consumption of cured meats and prospective risk of chronic obstructive pulmonary disease in women. Am. J. Clin. Nutr. 87, 1002–1008 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pourahmad, J., Eskandari, M. R. & Daraei, B. A comparison of hepatocyte cytotoxic mechanisms for Thallium (I) and Thallium (III). Environ. Toxicol. 25, 456–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Pourahmad, J., Rabiei, M., Jokar, F. & O’Brien, P. J. A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite. Toxicology 206, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Pourahmad, J., Eskandari, M. R., Shakibaei, R. & Kamalinejad, M. A search for hepatoprotective activity of fruit extract of Mangifera indica L. against oxidative stress cytotoxicity. Plant. Foods. Hum. Nutr. 65, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Hosseini, M.-J., Shaki, F., Ghazi-Khansari, M. & Pourahmad, J. Toxicity of Copper on Isolated Liver Mitochondria: Impairment at Complexes I, II, and IV Leads to Increased ROS Production. Cell Biochem. Biophys. 70, 367–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Church, F. C., Swaisgood, H. E., Porter, D. H. & Catignani, G. L. Spectrophotometric Assay Using Ortho-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk-Proteins. J. Dairy. Sci. 66, 1219–1227 (1983).

    Article  CAS  Google Scholar 

  24. Juffs, H. S. Proteolysis detection in milk. I. Interpretation of tyrosine value data for raw milk supplies in relation to natural variation, bacterial counts and other factors. J. Dairy. Res. 40, 371–381 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enayatollah Seydi or Jalal Pourahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, A., Yousefsani, B.S., Doroudian, P. et al. The mechanism of hepatotoxic effects of sodium nitrite on isolated rat hepatocytes. Toxicol. Environ. Health Sci. 9, 244–250 (2017). https://doi.org/10.1007/s13530-017-0327-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0327-z

Keywords

Navigation