Skip to main content
Log in

Concentrations and health risk assessment of Polycyclic aromatic hydrocarbons in Soils of an urban environment in the Niger Delta, Nigeria

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

The concentrations and compositional patterns of the United States Environmental Protection Agency (US EPA) 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in surface soils of an urban environment in the Niger Delta of Nigeria with a view to providing information on the sources, extent of contamination and human health risks of PAHs in these soils. The analyses were performed by means of gas chromatography-mass spectrometry (GC-MS) after extraction of the soils with hexane/dichloromethane and clean-up of the extracts. The concentration of Σ16 PAHs in the urban soils ranged from 188 to 684 µg kg−1, while the ΣPAH7c (carcinogenic PAHs) ranged from 28.5 and 571 µg kg−1. The estimated carcinogenic and mutagenic potency factors for these sites ranged from 2.34 to 197 and 9.66 to 195 µg kg−1 respectively. The composition of PAHs in these soils follows the order: 5-rings>4-rings>3-rings>6-rings>2-rings, and higher molecular weight PAHs accounted for a significant proportion of the Σ16 PAH concentration in this study. The results indicated that there is a high potential risk of cancer development as a result of exposure of PAHs via ingestion, dermal contact and inhalation. The diagnostic ratios indicate that the PAHs in these soils originated mainly from pyrogenic processes, such as combustion of petroleum, fossil fuels and biomass such as woods, charcoal straw and grasses. The results of this study provided information on the concentrations and compositional patterns of PAHs, which is useful in understanding the effects, sources, fate and transport of PAHs in soils, as well as environmental quality management and environmental forensic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Saha, M. et al. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 58, 189–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, B. et al. Risk assessment and source of polycyclic aromatic hydrocarbons in agricultural soils of Huanghnai Plain, China. Ecotox. Environ. Safe. 84, 304–310 (2012).

    Article  CAS  Google Scholar 

  3. Banger, K., Toor, G. S., Chirenje, T. & Ma, L. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida. Soil Sediment Contam. 9, 231–243 (2010).

    Google Scholar 

  4. Tavakkoli, E., Juhasz, A., Donner, E. & Lombi, E. Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using and isotopic dilution technique. Environ. Pollut. 199, 244–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Heywood, E., Wright, J. & Wienburg, C. L. Factors influencing national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils. Envir. Sci. Tech. 40, 7629–7635 (2006).

    Article  CAS  Google Scholar 

  6. Morillo, E. et al. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water, Air Soil Pollut. 187, 41–51 (2008).

    Article  CAS  Google Scholar 

  7. Abrahams, P. W. Soils: their implication to health. Sci. Total Environ. 291, 1–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Luo, X. S., Yu, S., Zhu, Y. G. & Li, X. D. Trace metal contamination in urban soils of China. Sci. Total Environ. 421-422, 17–30 (2012).

    Google Scholar 

  9. Peng, C. et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 159, 802–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Chahal, M. K., Toor, G. S. & Brown, P. Trace metals and polycyclic aromatic hydrocarbons in an urbanized area of Florida. Soil Sediment Contam. 19, 1–16 (2010).

    Article  Google Scholar 

  11. Olajire, A. A. & Brack, W. Polycyclic aromatic hydrocarbons in Niger Delta soil: Contamination sources and profiles. Int. J. Environ. Sci. Te. 2, 343–352 (2005).

    Google Scholar 

  12. Okoro, D. & Ikolo, O. A. Spatial variation and distribution of polycyclic aromatic hydrocarbons in soil. Bull. Chem. Soc. Ethiop. 21, 331–340 (2007).

    Google Scholar 

  13. Sojinu, O. S., Wang, J. Z., Sonibare, O. O. & Zeng, E. Y. Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. J. Hazard. Mater. 174, 641–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland; Preliminary proposal for criteria to evaluate the levels of soil contamination. Appl. Geochem. 11, 121–127 (1996).

    Article  Google Scholar 

  15. Trapido, M. Polycyclic aromatic hydrocarbons in Estonia soil: contamination and profiles. Environ. Pollut. 105, 67–74 (1999).

    Article  CAS  Google Scholar 

  16. Zhang, H. B. et al. Distribution and concentrations of PAHs in Hong Kong Soils. Environ. Pollut. 141, 107–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bucheli, T. D., Blum, F., Desaules, A. & Gustafsson, O. Polycyclic aromatic hydrocarbon, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56, 1061–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gocht, T., Moldenhauer, K. M. & Puttmann, W. Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in flood plain sediments from the Rhine Rivers (Hessiches Ried, Germany). Appl. Geochem. 16, 1707–1721 (2001).

    Article  CAS  Google Scholar 

  19. Ma, L. L. et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere 58, 1355–1363 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Imran, H., Kim, J. G., Kim, K. S. & Park, J. S. Polyaromatic hydrocarbons (PAHs) levels from two industrial zones (Sihwa and Banwal) located in An-san City of the Korea Peninsula and their influence on lake. J. Appl. Sci. Environ. Manag. 9, 63–69 (2005).

    Google Scholar 

  21. Kumar, V. & Kothiyal, N. C. Distribution behavior of polycyclic aromatic hydrocarbons in roadside soil at traffic intercepts within developing cities. Int. J. Environ. Sci. Te. 8, 63–72 (2011).

    Article  CAS  Google Scholar 

  22. Barran-Berdon, A. L. et al. Polycyclic aromatic hydrocarbons in soils from a brick manufacturing location in central Mexico. Rev. Int. Contam. Ambie. 28, 277–288 (2012).

    CAS  Google Scholar 

  23. Kumar, B. et al. Distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls and their source identification urban roadside soils. Arch. Appl. Sci. Res. 4, 1906–1916 (2012).

    CAS  Google Scholar 

  24. Sojinu, O. S., Sonibare, O. O. & Zeng, E. Y. Concentrations of polycyclic aromatic hydrocarbons in soils of a mangrove forest affected by forest fire. Toxicol. Environ. Chem. 93, 450–461 (2011).

    Article  CAS  Google Scholar 

  25. Meharg, A. A., Wright, J., Dyke, H. & Osborn, D. Polycyclic aromatic hydrocarbons (PAHs) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environ. Pollut. 99, 29–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Spitzer, T. & Kuwatsuka, S. Residue levels of polynuclear aromatic compound surface from Japan. J. Chromatogr. 643, 305–309 (1993).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Polycyclic aromatic hydrocarbons in urban soil from Beijing China. J. Environ. Sci. 18, 944–950 (2006).

    Article  CAS  Google Scholar 

  28. Man, Y. B. et al. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J. Hazard. Mater. 261, 770–776 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. T. et al. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci. Total Environ. 447, 80–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, G. et al. Polycyclic aromatic hydrocarbons in urban soil of Hangzhou, status, distribution, sources and potential risk. Environ. Monit. Assess. 186, 2775–2784 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Vane, C. H. et al. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in urban soils of Greater London, UK.Appl. Geochem. 51, 300–314 (2014).

    Google Scholar 

  32. Jiao, H. et al. Polycyclic aromatic hydrocarbons in the Daigang oilfield (China): Distribution, sources, and risk. Int. J. Environ. Res. Public Health 12, 5775–5791 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiller, E., Lachká, L., Jurkovic, L. & Vozár, J. Polyclicyclic aromatic hydrocarbons in urban soils from kindergartens and playgrounds in Bratislava, the capital city of Slovakia. Environ. Earth Sci. 73, 7174–7156 (2015).

    Article  Google Scholar 

  34. Yang, Y., Woodward, L. A., Li, Q. X. & Wang, J. Concentrations, sources and risk assessment of polycyclic aromatic hydrocarbons in soils from Midway Atoll, North Pacific Ocean. PLoS ONE 9, e86441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tesi, G. O., Iwegbue, C. M. A., Emuh, F. N. & Nwajei, G. E. Ladgo Dam floods disaster of 2012: Polycyclic aromatic hydrocarbon Assessment of floodplain soils, lower reaches of River Niger, Nigeria. J. Environ. Qual. 45, 305–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Iwegbue, C. M. A. & Obi, G. Distribution, source and health risk assessment of polycyclic aromatic hydrocarbons in dust from urban environment in the Niger Delta, Nigeria. Hum. Ecol. Risk Assess. 22, 623–638 (2016).

    Article  CAS  Google Scholar 

  37. Netherlands Ministry of Housing and Environment. Environmental quality objectives in the Netherlands: A review of environmental quality objectives and their policy framework in the Netherlands. Risk Assessment and Environmental Quality Division. Directorate for Chemicals, External Safety and Radiation Protection, Ministry of Housing Spatial Planning and the Environment, Netherlands (1994).

  38. Jiang, Y. F. et al. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 75, 1112–1118 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) in soil. A review. J. Plant. Nutr. Soil. Sc. 163, 229–243 (2000).

    Article  CAS  Google Scholar 

  40. Agarwal, T., Khillare, P. S., Shridhar, V. & Ray, S. Pattern, source and toxic potential of PAHs in agricultural soil of Delhi, India. J. Hazard. Mater. 163, 1033–1039 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Nam, J. J., Song, B. H., Eoma, K. C., Lee, S. H. & Smith, A. Distribution of polycyclic aromatic hydrocarbons in agricultural soil in South Korea. Chemosphere 50, 1281–1289 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, Z. et al. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68, 965–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Nam, J. J. et al. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere 70, 1596–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Peng, C. et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 159, 802–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Li, J. et al. Polycyclic aromatic hydrocarbon in water, sediment, soil and plants of the Aojiang River waterway in Wenzhow, China. J. Hazard. Mater. 173, 75–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Zeiger, E. Identification of rodent carcinogens and non-carcinogens using genetic toxicity tests: premises, promises, and performance. Regul. Toxicol. Pharm. 28, 85–95 (1998).

    Article  CAS  Google Scholar 

  47. Zeiger, E. Mutagens that are not carcinogens: faulty theory or faulty tests? Mutation Research. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 492, 29–38 (2001).

    Article  CAS  Google Scholar 

  48. De Marini, D. M. et al. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environ. Health Persp. 112, 814–819 (2004).

    Article  Google Scholar 

  49. Seagrave, J. et al. Mutagenicity and in vivo toxicity of combined particulate and semi volatile organic fractions of gasoline and diesel engine emissions. Toxicol. Sci. 70, 212–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Orecchio, S. Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a natural reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement. J. Hazard. Mater. 173, 358–368 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W. et al. Concentration, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environ. Pollut. 158, 1245–1251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qu, C. et al. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ. Geochem. Health. 37, 587–601 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Olawoyin, R., Grayson, R. L. & Okareh, O. T. Ecotoxicological and epidemiological assessment of human exposure to polycyclic aromatic hydrocarbons in the Niger Delta, Nigeria. Toxicol. Environ. Health Sci. 4, 173–185 (2012).

    Article  Google Scholar 

  54. Chen, S. C. & Liao, C. M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 366, 112–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. NYS DOH (New York States Department of Health). Hopewell precision area contamination: Appendix C-NYS DOH, In: Procedure for evaluating potential health risks for contaminants of concern (2007).

  56. Kamal, A., Malik, R. N., Martellini, T. & Cincinelli, A. Sources, profile, and carcinogenic risk assessment for cohorts occupationally exposure to dust-bound PAHs in Lahore and Rawalpindi cities (Punjab province, Pakistan). Environ. Sci. Pollut. R. 22, 10580–10591 (2015).

    Article  CAS  Google Scholar 

  57. Kamal, A., Malik, R. N., Martellini, T. & Cincinelli, A. Exposure to dust bound PAHs and associated carcinogenic risk in primitive and traditional cooking practices in Pakistan. Environ. Sci. Pollut. 22, 12644–12654 (2015).

    Article  CAS  Google Scholar 

  58. Wang, W. et al. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 409, 4519–4527 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. US EPA (United States Environmental Protection Agency). Regional Screening Levels (RSL) Tables. In: Kansas Department of Health and Environment (KDHE)/ Bureau of Environmental Remediation (BER). Risk-based Standards for Kansas (RSK) Manual, 5th version (2010).

  60. Yunker, M. B. et al. PAHs in the Faster River Basic: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 32, 489–515 (2002).

    Article  Google Scholar 

  61. Guo, Z. et al. Occurrence and source of polycyclic aromatic hydrocarbons and n-alkanes in PM2.5 in the roadside environment of a major city in China. J. Hazard. Mater. 170, 888–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Katsoyiannis, A. & Breivik, K. Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ. Pollut. 184, 488–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kamal, A., Malik, R. N., Martellini, T. & Cincinelli, A. Cancer risk evaluation of kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Sci. Total Environ. 493, 562–570 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Kuang, Y. et al. Analysis of polycyclic aromatic hydrocarbons in tree rings of Masson pine (Pinus massoniana L.) from two industrial sites in the Pearl River Delta, South China. J. Environ. Monitor. 13, 2630–2637 (2011).

    Article  CAS  Google Scholar 

  65. Mai, B. X. et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ. Sci. Technol. 37, 4855–4863 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, B. K. & Dong, T. T. T. Toxicity and sources assignment of polycyclic aromatic hydrocarbons in road dust from urban residential and industrial areas in a typical industrial city in Korea. J. Mater. Cycles. Waste. 13, 34–42 (2011).

    Article  CAS  Google Scholar 

  67. Simoneit, B. R. T. et al. Molecular marker study of extractable organic matter in aerosols from urban area of China. Atmos. Environ. 25A, 2111–2129 (1991).

    Article  CAS  Google Scholar 

  68. Liu, M. et al. Characterization, identification of road dust PAHs in central Shanghai area, China. Atmospheric Environment 41, 8785–8795 (2007).

    Article  CAS  Google Scholar 

  69. Barreca, S. et al. Determination of selected polyaromatic hydrocarbons by gas chromatography-mass spectrometry for the analysis of wood to establish the cause of sinking of an old vessel (Scauri wreck) by fire. Microchem. J. 117, 116–121 (2014).

    Article  CAS  Google Scholar 

  70. Lv, J., Shi, R., Cai, Y. & Liu, Y. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China. Bull. Hist. Chem. 85, 5–9 (2010).

    CAS  Google Scholar 

  71. Wang, D. G., Yang, M. & Jia, H. L. Polycyclic aromatic hydrocarbons in urban street dust and surface soil: Comparison of concentrations, profiles and sources. Arch. Environ. Contam. Toxicol. 56, 173–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Iwegbue, C. M. A., Nwajei, G. E. & Eguavoen, O. I. Impact of land use pattern on chemical properties of trace element in soils of rural, semi-urban and urban zones of the Niger Delta, Nigeria. Soil Sediment Contam. 21, 19–30 (2012).

    Article  CAS  Google Scholar 

  73. Olabaniyi, S. B. & Owoyemi, F. B. Characterization by factor analysis of the chemical facies of groundwater in Deltaic plain sand aquifer of Warri, Western Niger Delta. Afr. J. Environ. Sci. Technol. 7, 73–81 (2006).

    Google Scholar 

  74. Iwegbue, C. M. A., Nwajei, G. E., Eguavoen, O. & Ogala, J. E. Chemical fractionation of some heavy metals in soil profiles in the vicinity of scrap dumps in Warri, Nigeria. Chem. Speciation Bioavailability 21, 99–110 (2009).

    Article  CAS  Google Scholar 

  75. Iwegbue, C. M. A., Nwajei, G. E., Ogala, J. E. & Overah, C. L. Determination of trace metal concentrations in soil profiles of municipal waste dumps in Nigeria. Environ. Geochem. Health 32, 415–430 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Wilcke, W. et al. Polycyclic aromatic hydrocarbons (PAHs) in soils of the Moscow Region-concentrations, temporal trends, and small-scale distribution. J. Environ. Qual. 31, 1581–1590 (2005).

    Article  Google Scholar 

  77. Pies, C., Yang, Y. & Hofmann, T. Distribution of polycyclic aromatic hydrocarbons (PAHs) in flood plain soils of Mosel and Saer River. J. Soils Sediments 7, 216–222 (2007).

    Article  CAS  Google Scholar 

  78. Thompson, T. S., Clement, R. E., Thornton, N. & Luyt, J. Foundation and emission of PCDDs/PCDFs in the petroleum refining industry. Chemosphere 20, 1525–1532 (1990).

    Article  CAS  Google Scholar 

  79. Nisbet, I. C. T. & LaGoy, P. K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16, 290–300 (1992).

    Article  CAS  Google Scholar 

  80. US EPA (United States Environmental Protection Agency). Risk-based concentration Table. U.S. Environmental Protection Agency, Region 111 (Third Quarter) (1993).

  81. Larsen, J. C. & Larsen, P. B. Chemical carcinogens. In: Hester, E.E. and Harrison, R.R. (Eds). Air Pollution and Health. Cambridge, UK: The Royal Society of Chemistry (1998).

    Google Scholar 

  82. Durant, J. L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. 371, 123–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. US EPA (United States Environmental Protection Agency). Risk assessment guidance for superfund. Volume 1: Human Health Evaluation Manual (F, supplemental guidance for Inhalation Risk Assessment), https://www.epa.gov/sites/production/files/2015-09/ documents/rags_a.pdf (2009).

  84. Risk Assessment guidance for superfund, Volume 1: Human Health Evaluation Manual EPA/se0/1-89/002, https://www.epa.gov/sites/production/files/2015-09/ documents/rags_a.pdf (1989).

  85. {nitAssessment guidance for superfund. Volume 1: Human evaluation Manual (Part E, Supplemental guidance for defined risk assessment). EPA/540/R/99/005.7, https://www.epa.gov/sites/production/files/2015-09/documents/ rags_a.pdf (2001).}

  86. Exposure Factors Handbook., https://www.epa.gov/ sites/production/files/2015-09/documents/rags_a.pdf (1997).

  87. Mid Atlantic risk assessment Regional Screening Level (RSL) Summary Table (2012), http://www.epa.gov/regional superfund/prog/ (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwujindu M. A. Iwegbue.

Electronic supplementary material

13530_2016_279_MOESM1_ESM.pdf

Concentrations and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils of an Urban Environment in the Niger Delta, Nigeria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwegbue, C.M.A., Obi, G., Aganbi, E. et al. Concentrations and health risk assessment of Polycyclic aromatic hydrocarbons in Soils of an urban environment in the Niger Delta, Nigeria. Toxicol. Environ. Health Sci. 8, 221–233 (2016). https://doi.org/10.1007/s13530-016-0279-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0279-8

Keywords

Navigation