Skip to main content

Advertisement

Log in

An increased disulfide/native thiol ratio and oxidative stress index in metabolic syndrome patients with postprandial lipemia

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Metabolic syndrome (MetS) is closely related to lipid disorders and increased oxidant stress, and is associated with cardiovascular diseases.

Objective

The purpose of this research was to examine thiol/disulfide homeostasis and oxidative stress in MetS patients with postprandial lipemia (PPL) during fasting by considering time-dependent changes in the postprandial period.

Methods

Twenty-five patients with MetS and 25 healthy controls underwent a 6-h oral fat tolerance test. Dynamic thiol/disulfide homeostasis (native thiol, disulfide, and total thiol) values and total oxidant status (TOS), total antioxidant status (TAS), and Oxidative Stress Index (OSI): (TOS/TAS) were evaluated.

Results

Increased levels of disulfide, and higher disulfide/native thiol ratio, TOS, and OSI values were observed at fasting and in the postprandial period in MetS compared to the control group, peaking at the 4th hour in both groups (p < 0.05). ROC analysis showed that both fasting and 4th hour disulfide/native thiol ratios exhibited the highest values. Higher disulfide/native thiol ratio values were observed at the 4th hour and higher OSI in the 2nd hour in the upper tertiles for MetS (p < 0.05).

Conclusions

An increased disulfide/native thiol ratio and OSI level elevation in MetS may be closely associated with PPL. The disulfide/native thiol ratio in MetS subjects with PPL may play a role for evaluating oxidative stress, especially in postprandial 4th hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Jialal I, Devaraj S, Adams-Huet B, Chen X, Kaur H. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J Clin Endocrinol Metab. 2012;97(10):1844–50. https://doi.org/10.1210/jc.2012-2498.

    Article  CAS  Google Scholar 

  2. Kolovou GD, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol. 2011;9(3):258–70. https://doi.org/10.2174/157016111795495549.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson KG, Sally DP, Minihane AM. Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220(1):22–33. https://doi.org/10.1016/j.atherosclerosis.2011.08.012.

    Article  CAS  PubMed  Google Scholar 

  4. Orem A, Yaman SO, Altinkaynak B, Kural BV, Yucesan FB, Altinkaynak Y, Orem C. Relationship between postprandial lipemia and atherogenic factors in healthy subjects by considering gender differences. Clin Chim Acta. 2018;8:34–40. https://doi.org/10.1016/j.cca.2018.01.038.

    Article  CAS  Google Scholar 

  5. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circulation Res. 2016;118(4):547–63. https://doi.org/10.1161/CIRCRESAHA.115.306249.

    Article  CAS  PubMed  Google Scholar 

  6. Yaman SO, Orem A, Yucesan FB, Kural BV, Orem C. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia. Life Sci. 2021;264:118585. https://doi.org/10.1016/j.lfs.2020.118585.

    Article  CAS  PubMed  Google Scholar 

  7. Tan BL, Norhaizan ME, Liew WPP. Nutrients and oxidative stress: friend or foe? Oxid Med Cell Longev. 2018;2018:1–24. https://doi.org/10.1155/2018/9719584.

    Article  CAS  Google Scholar 

  8. Le NA. Postprandial triglycerides, oxidative stress, and ınflammation. In: Apolipoproteins, Triglycerides and Cholesterol. IntechOpen; 2020. https://doi.org/10.5772/intechopen.91303.

    Chapter  Google Scholar 

  9. Andrade ER, Melo-Sterza FA, Seneda MM, et al. Consequences of production of reactive oxygen species in reproduction and main antioxidant mechanisms. Rev Bras Reprod Anim. 2010;34(2):79–85.

    Google Scholar 

  10. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, el Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:694. https://doi.org/10.3389/fphys.2020.00694.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dirican N, Dirican A, Sen O, Aynali A, Atalay S, Bircan HA, Oztürk O, Erdogan S, Cakir M, Akkaya A. Thiol/disulfide homeostasis: a prognostic biomarker for patients with advanced non-small cell lung cancer. Redox Rep. 2017;21(5):197–203. https://doi.org/10.1179/1351000215Y.0000000027.

    Article  CAS  Google Scholar 

  12. Topuz M, Kaplan M, Akkus O, Sen O, Yunsel HD, Allahverdiyev S, Erel O, Koc M, Gur M. The prognostic importance of thiol/disulfide homeostasis in patients with acute pulmonary thromboembolism. Am J Emerg Med. 2016;34(12):2315–9. https://doi.org/10.1016/j.ajem.2016.08.039.

    Article  PubMed  Google Scholar 

  13. Kızıltunç E, Gök M, Kundi H, Çetin M, Topçuoğlu C, Gülkan B, Çiçekçioğlu H, Örnek E. Plasma thiols and thiol-disulfide homeostasis in patients with isolated coronary artery ectasia. Atherosclerosis. 2016;253:209–13. https://doi.org/10.1016/j.atherosclerosis.2016.07.904.

    Article  CAS  PubMed  Google Scholar 

  14. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326–32. https://doi.org/10.1016/j.clinbiochem.2014.09.026.

    Article  CAS  PubMed  Google Scholar 

  15. Bartosz G. Total antioxidant capacity. Adv Clin Chem. 2003;37:219–92. https://doi.org/10.1016/s0065-2423(03)37010-6.

    Article  CAS  PubMed  Google Scholar 

  16. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–11. https://doi.org/10.1016/j.clinbiochem.2005.08.008.

    Article  CAS  PubMed  Google Scholar 

  17. Avelar TMT, Storch AS, Castro LA, et al. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved? J Bras Patol Med Lab. 2015;51:231–9. https://doi.org/10.5935/1676-2444.20150039.

    Article  CAS  Google Scholar 

  18. Ando K, Fujita T. Metabolic syndrome and oxidative stress. Free Radic Biol Med. 2009;47(3):213–8. https://doi.org/10.1016/j.lfs.2009.02.026.

    Article  CAS  PubMed  Google Scholar 

  19. Chung SW, Kang SG, Rho JS, Kim HN, Song IS, Lee YA, Heo SJ, Song SW. The association between oxidative stress and metabolic syndrome in adults. Korean J Fam Med. 2013;34(6):420–8. https://doi.org/10.4082/kjfm.2013.34.6.420.

    Article  PubMed  PubMed Central  Google Scholar 

  20. National Cholesterol Education Program (NCEP): Expert Panel on Detection and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Article  Google Scholar 

  21. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung and Blood Institute scientific statement. Circulation. 2005;112(12):2735–52. https://doi.org/10.1161/CIRCULATIONAHA.105.169404.

    Article  PubMed  Google Scholar 

  22. Katsuki A, Sumida Y, Gabazza EC, Murashima S, Furuta M, Araki-Sasaki R, Hori Y, Yano Y, Adachi Y. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes care. 2001;24(2):362–5. https://doi.org/10.2337/diacare.24.2.362.

    Article  CAS  PubMed  Google Scholar 

  23. Ates I, Kaplan M, Yuksel M, et al. Determination of thiol/disulphide homeostasis in type 1 diabetes mellitus and the factors associated with thiol oxidation. Endocrine. 2016;51(1):47–51. https://doi.org/10.1007/s12020-015-0784-6.

    Article  CAS  PubMed  Google Scholar 

  24. Durmuş SY, Şahin NM, Ergin M, et al. How does thiol/disulfide homeostasis change in children with type 1 diabetes mellitus? Diabetes Res Clin Pract. 2019;149:64–8. https://doi.org/10.1016/j.diabres.2019.01.027.

    Article  CAS  Google Scholar 

  25. Ates I, Kaplan M, Inan B, Alısık M, Erel O, Yilmaz N, Guler S. How does thiol/disulfide homeostasis change in prediabetic patients? Diabetes Res Clin Pract. 2015;110(2):166–71. https://doi.org/10.1016/j.diabres.2015.09.011.

    Article  CAS  PubMed  Google Scholar 

  26. Ergin M, Aydin C, Yurt EF, Cakir B, Erel O. The variation of disulfides in the progression of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2020;128(02):77–81. https://doi.org/10.1055/s-0044-100376.

    Article  CAS  PubMed  Google Scholar 

  27. Ateş I, Ozkayar N, Altay M, Yilmaz FM, Topçuoğlu C, Alışık M, Erel Ö, Dede F. Is disulphide/thiol ratio related to blood pressure in masked hypertension? Clin Exp Hypertens. 2016;38(2):150–4. https://doi.org/10.3109/10641963.2015.1060995.

    Article  CAS  PubMed  Google Scholar 

  28. Ateş I, Ozkayar N, Inan B, et al. Dynamic thiol/disulphide homeostasis in patients with newly diagnosed primary hypertension. Am J Hypertens. 2016;10(2):159–66. https://doi.org/10.1016/j.jash.2015.12.008.

    Article  CAS  Google Scholar 

  29. Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. Nutr J. 2006;136(12):3022–6. https://doi.org/10.1093/jn/136.12.3022.

    Article  CAS  Google Scholar 

  30. Wallace JP, Johnson B, Padilla J, Mather K. Postprandial lipaemia, oxidative stress and endothelial function: a review. Int J Clin Pract. 2010;64(3):389–403. https://doi.org/10.1111/j.1742-1241.2009.02146.x.

    Article  CAS  PubMed  Google Scholar 

  31. Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients. 2019;11(11):2579. https://doi.org/10.3390/nu11112579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bloomer RJ, Kabir MM, Marshall KE, Canale RE, Farney TM. Postprandial oxidative stress in response to dextrose and lipid meals of differing size. Lipids Health Dis. 2010;9(1):1–11. https://doi.org/10.1186/1476-511X-9-79.

    Article  CAS  Google Scholar 

  33. Kanner J, Selhub J, Shpaizer A, Rabkin B, Shacham I, Tirosh O. Redox homeostasis in stomach medium by foods: the Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol. 2017;12:929–36. https://doi.org/10.1016/j.redox.2017.04.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. High-fat, energy-dense, fast-food–style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism. 2008;57(6):867–70. https://doi.org/10.1016/j.metabol.2008.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative stress. Nutr Metab Cardiovasc Dis. 2010;20(1):72–7. https://doi.org/10.1016/j.numecd.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  36. Fisher-Wellman K, Bloomer RJ. Macronutrient specific postprandial oxidative stress: relevance to the development of insulin resistance. Curr Diabetes Rev. 2009;5:228–38. https://doi.org/10.2174/157339909789804369.

    Article  CAS  PubMed  Google Scholar 

  37. Kullisaar T, Shepetova J, Zilmer K, Songisepp E, Rehema A, Mikelsaar M, Zilmer M. An antioxidant probiotic reduces postprandial lipemia and oxidative stress. Cent Eur J Biol. 2011;6(1):32–40. https://doi.org/10.2478/s11535-010-0103-4.

    Article  Google Scholar 

  38. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31(3):132–9. https://doi.org/10.1097/MOL.0000000000000682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Karadeniz Technical University, Faculty of Medicine, and Department of Medical Biochemistry, where this study was performed. We are also indebted to all those individuals who agreed to participate in the research.

Author information

Authors and Affiliations

Authors

Contributions

S.O.Y., A.O., and F.B.Y. planned and designed this research. S.O.Y., A.O., and C.O. conducted the research. S.O.Y. and F.B.Y. performed and conceived the experiments. S.O.Y., F.B.Y., and H.Y. analyzed the data. S.O.Y., A.O., F.B.Y., and B.V.K. wrote the manuscript. All authors read and approved the final version.

Corresponding author

Correspondence to Serap Ozer Yaman.

Ethics declarations

Ethics approval

Approvals from the local Ethics Committee were obtained (Submission Number 2021/142, dated May 5, 2021).

Consent to participation

Before enrolling in this study, written informed consent was obtained from all participants (both control and MetS groups).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer Yaman, S., Balaban Yucesan, F., Orem, A. et al. An increased disulfide/native thiol ratio and oxidative stress index in metabolic syndrome patients with postprandial lipemia. Int J Diabetes Dev Ctries 43, 125–133 (2023). https://doi.org/10.1007/s13410-022-01095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-022-01095-y

Keywords

Navigation