Skip to main content

Advertisement

Log in

Autoantibodies and HLA class II DR-DQ genotypes in Ugandan children and adolescents with type 1 diabetes mellitus

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The aims were to determine the prevalence of autoantibodies in type 1 diabetes mellitus (T1DM) and further to investigate the human leukocyte antigen (HLA) class II DR-DQ genotypes associated with T1DM in Ugandan children and adolescents. Cross-sectional data were collected between January and December 2015 from 85 recently detected T1DM children and adolescents and 79 age-matched healthy controls. We measured serum concentrations of C-peptide, vitamin D, insulin autoantibodies (IAA), zinc transporter family member 8 antibodies (ZnT8-Ab), and glutamic acid decarboxylase autoantibodies (GADA). HLA-DBR1 and HLA-DQB1 typing was performed on EDTA-anticoagulated blood samples. The t test, chi-square test, and univariate logistic test were performed and multivariate logistic regression model fitted to identify associated factors of T1DM. Positive IAA and ZnT8-Ab were significantly higher in T1DM than in controls. GADA showed no difference between TIDM and controls. HLA-DQB1*02, unadjusted odds ratio (UOR) 4.2 (95% CI 1.4–12.7), and HLA-DBR1*04, adjusted odds ratio (AOR) 30.6 (95% CI 5.7–161.7), were significantly associated with T1DM. IAA and ZnT8-Ab are the likely significant positive antibodies in Ugandan children and adolescents with T1DM. The T1DM was associated with HLA-DQB1*02 and HLA-DBR1*04 (HLA-DR3 and HLA-DR4) genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Diabetes Association. Standards of medical care in diabetes—2017 abridged for primary care providers. Clin Diabetes. 2017;35:5–26.

    Article  PubMed Central  Google Scholar 

  2. Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: a review of current data. World J Diabetes. 2016;7:433–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387:2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DIAMOND Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990-1999. Diabet Med. 2006;23:857–66.

    Article  Google Scholar 

  5. International Diabetes Federation. IDF diabetes atlas, Seventh edn (Brussels 2015).

  6. Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev. 2010;9:A355–65.

    Article  PubMed  Google Scholar 

  7. Kalk WJ, Huddle KRL, Raal FJ. The age of onset and sex distribution of insulin-dependent diabetes mellitus in Africans in South Africa. Postgrad Med J. 1993;69:552–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. You W-P, Henneberg M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Res Care. 2016;4(1):e000161. https://doi.org/10.1136/bmjdrc-2015-000161).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cook AR. Notes on the diseases met with in Uganda, Central Africa. J Trop Med. 1901;4:175–8.

    Google Scholar 

  10. Piloya-Were T, Sunni M, Ogle GD, Moran A. Childhood diabetes in Africa. Curr Opin Endocrinol Diabetes Obes. 2016;23:306–11.

    Article  PubMed  Google Scholar 

  11. World Health Organization. Global report on diabetes. Geneva: World Health Organization; 2016.

    Google Scholar 

  12. Padoa C. The epidemiology and pathogenesis of type 1 diabetes mellitus in Africa. J Endocrinol Metab Diabetes S Afr. 2011;16:130–6.

    Article  Google Scholar 

  13. Steck AK, Rewers MJ. Genetics of type 1 diabetes. Clin Chem. 2011;57:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007732. https://doi.org/10.1101/cshperspect.a007732.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nguyen C, Varney MD, Harrison LC, Morahan G. Definition of high-risk type 1 diabetes HLA-DR and HLA-DQ types using only three single nucleotide polymorphisms. Diabetes. 2013;62:2135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Howson JMM, Stevens H, Smyth DJ, Walker NM, Chandler KA, Bingley PJ, et al. Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct. Diabetes. 2011;60:2635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roark CL, Anderson KM, Simon LJ, Schuyler RP, Aubrey MT, Freed BM. Multiple HLA epitopes contribute to type 1diabetes susceptibility. Diabetes. 2014;63:323–31.

    Article  CAS  PubMed  Google Scholar 

  18. Noble JA, Valdes AM, Varney MD, Carlson JA, Moonsamy P, Fear AL, et al. HLA class I and genetic susceptibility to type 1 diabetes. Results from the type 1 diabetes genetics consortium. Diabetes. 2010;59:2972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barrett JC, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kantarova D, Vrlik M, Buc M. Genetic determination and immunopathogenesis of type 1 diabetes mellitus in humans. Acta Med Mart. 2012;12:19–31.

    Google Scholar 

  21. Christie MR, Vohra G, Champagne P, Daneman D, Delovitch TL. Distinct antibody specificities to a 64-kD islet cell antigen in type 1 diabetes as revealed by trypsin treatment. J Exp Med. 1990;172:789–94.

    Article  CAS  PubMed  Google Scholar 

  22. Biekkeskov S, et al. Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J Clin Invest. 1987;79:926–34.

    Article  Google Scholar 

  23. Ludvigsson J, Carlsson A, Forsander G, Ivarsson S, Kockum I, Lernmark Å, et al. C-peptide in the classification of diabetes in children and adolescents. Pediatr Diabetes. 2012;13:45–50.

    Article  CAS  PubMed  Google Scholar 

  24. Kuhtreiber WM, Washer SLL, Hsu E, Zhao M, Reinhold P III, Burger D, et al. Low levels of C-peptide have clinical significance for established type 1 diabetes. Diabet Med. 2015;32:1346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med. 2013;30:803–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis AK, DuBose S, Haller MJ, Miller KM, DiMeglio L, Bethin KE, et al. Prevalence of detectable C-peptide according to age at diagnosis and duration of type 1 diabetes. Diabete Care. 2015;38:476–81.

    Article  CAS  Google Scholar 

  27. Nokoff N, Rewers M. Pathogenesis of type 1 diabetes: lessons from natural history studies of high-risk individuals. Ann N Y Acad Sci. 2013;1281:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007641. https://doi.org/10.1101/cshperspect.a007641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The Expert Committee On the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26:S5–20.

    Article  Google Scholar 

  30. Acharjee S, Ghosh B, Al-Dhubiab BE, Nair AB. Understanding type 1 diabetes: etiology and models. Can J Diabetes. 2013;37:269–76.

    Article  PubMed  Google Scholar 

  31. Rubio-Cabezas O, Hattersley AT, Njølstad PR, Mlynarski W, Ellard S, White N, et al. ISPAD clinical practice consensus guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):47–64.

    Article  CAS  PubMed  Google Scholar 

  32. Asanghanwa M, et al. Clinical and biological characteristics of diabetic patients under age 40 in Cameroon: relation to autoantibody status and comparison with Belgian patients. DRCP. 2014;103:97–105.

    Google Scholar 

  33. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81:353–73.

    Article  CAS  PubMed  Google Scholar 

  34. Mack SJ, Cano P, Hollenbach JA, He J, Hurley CK, Middleton D, et al. Common and well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens. 2013;81:194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayor NP, Robinson J, McWhinnie AJM, Ranade S, Eng K, Midwinter W, et al. HLA typing for the next generation. PLoS One. 2015;10:e0127153. https://doi.org/10.1371/journal.pone.0127153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie M, Li J, Jiang T. Accurate HLA type inference using a weighted similarity graph. BMC Bioinformatics. 2010;11(Suppl 11):S10. https://doi.org/10.1186/1471-2105-11-S11-S10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morran MP, Vonberg A, Khadra A, Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol Asp Med. 2015;42:42–60.

    Article  CAS  Google Scholar 

  38. Patrick R. A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: an application to medicine. Stat Med. 1993;12:181–4.

    Article  Google Scholar 

  39. Berry KJ, Mielke PW Jr, Mielke HW. The Fisher-Pitman permutation test: an attractive alternative to the F test. Psychol Rep. 2002;90:495–502.

    Article  PubMed  Google Scholar 

  40. Pundziute-Lycka A, et al. The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-34 years group in Sweden 1983-1998. Diabetologia. 2002;45:783–91.

    Article  CAS  PubMed  Google Scholar 

  41. Del Gobbo LC, Song Y, Dannenbaum DA, Dewailly E, Egeland GM. Serum 25-hydroxyvitamin D is not associated with insulin resistance or beta cell function in Canadian Cree. J Nutr. 2011;141:290–5.

    Article  CAS  PubMed  Google Scholar 

  42. Svoren BM, Volkening LK, Wood JR, Laffel LM. Significant vitamin D deficiency in youth with type 1 diabetes mellitus. J Pediatr. 2009;154:132–4.

    Article  PubMed  PubMed Central  Google Scholar 

  43. The NS, Crandell JL, Lawrence JM, King IB, Dabelea D, Marcovina SM, et al. Vitamin D in youth with type 1 diabetes: prevalence of insufficiency and association with insulin resistance in the SEARCH Nutrition Ancillary Study. Diabet Med. 2013;30:1324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Regnell SE, Lernmark Å. Early prediction of autoimmune (type 1) diabetes. Diabetologia. 2017;60:1370–81. https://doi.org/10.1007/s00125-017-4308-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanatsuna N, Papadopoulos GK, Moustakas AK, Lenmark A. Etiopathogenesis of insulin autoimmunity. Anat Res Int. 2012;2012:457546.

    PubMed  PubMed Central  Google Scholar 

  46. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mendivil CO, Toloza FJK, Ricardo-Silgado ML, Morales-Alvarez MC, Mantilla-Rivas JO, Pinzón-Cortés JA, et al. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study. Diabetes Metab Syndr Obes. 2017;10:179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miao D, Steck AK, Zhang L, Guyer KM, Jiang L, Armstrong T, et al. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabetes Technol Ther. 2015;17:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lutale, J.J., Thordarson, H., Holm, P.I., Eide, G.E. & Vetvik, K. Islet cell autoantibodies in African patients with type 1 and type 2 diabetes in Dar es Salaam Tanzania: a cross sectional study. J Autoimmune Dis 4, 4 (2007).

  50. Ekpebegh CO, Longo-Mbenza B. Clinical, immunologic and insulin secretory characteristics of young black South African patients with diabetes: hospital based single centre study. Diabetes Res Clin Pract. 2013;99:380–4.

    Article  CAS  PubMed  Google Scholar 

  51. Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet. 2016;387:2331–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contribution of Dr. William Omale, Arua Regional Hospital, for his assistance in organizing the type 1 diabetes clinic in Arua Regional Hospital, Uganda. We also like to thank MBN Clinical Laboratory and St. Francis Hospital, Nsambya, for the kind assistance in handling the laboratory samples and analysis. We thank the World Diabetes Foundation (WDF) and Novo Nordisk Changing Diabetes in Children (CDiC) for funding the type 1 diabetes clinics in Uganda. We wish to thank all the health workers and parents involved in the type 1 diabetes clinics in Uganda.

Funding

This study was supported by a grant from the Africa Field Epidemiology Network (AFENET). The funds were towards the laboratory costs. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors, SKB, RW, TPW, and CN, contributed to the design, data collection, data analysis, and writing of the manuscript. All authors: read and approved the final manuscript.

Corresponding author

Correspondence to Silver Bahendeka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study: children aged 8–17 years assented to participate, with parents of children below age of 18 years giving the informed consent. Participants above the age of 18 years were eligible and gave informed consent to participate.

Ethical approval

Ethical approval was obtained from St. Francis Hospital, Nsambya and Mulago Hospital Institutional Review Boards/Review Ethical Committees; both of which are accredited by the Uganda National Council of Science and Technology (UNCST). All procedures performed in this study were in accordance with the ethical standards of UNCST and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahendeka, S., Wesonga, R., Were, T.P. et al. Autoantibodies and HLA class II DR-DQ genotypes in Ugandan children and adolescents with type 1 diabetes mellitus. Int J Diabetes Dev Ctries 39, 39–46 (2019). https://doi.org/10.1007/s13410-018-0622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-018-0622-5

Keywords

Navigation