Skip to main content
Log in

“Green” seed-mediated synthesis and morphology of Au nanoparticles using β-cyclodextrin

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Gold nanoparticles (NPs) with dendritic morphology were synthesized by a “green” seed-mediated approach in the presence of β-cyclodextrin (β-CD) as stabilizing biocompatible capping agent. First, 50 mL of an aqueous solution containing 5 mM of β-CD were prepared, to which a variable amount of HAuCl4 was added. The β-CD/Au molar ratio was monitored from 20 to 200. Optical properties, including Surface-Enhanced Raman Scattering (SERS) activity, of the synthesized structures were characterized by Raman and UV-vis spectroscopies. Morphology was studied by transmission electron microscopy (TEM). Samples prepared using this procedure presents an increase of their SERS signal with respect to samples without peak-rich morphology. Optimized nanodendrites were obtained at a β-CD/Au molar ratio of 100. Moreover, a growth mechanism is proposed to describe the β-cyclodextrin role in the synthesis of Au nanodendrites. The “green” seed-mediated synthesis technique used herein produces Au NPs with good biocompatibility pointing them out for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264. doi:10.1021/ar960016n

    Article  Google Scholar 

  2. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870. doi:10.1021/jp0516846

    Article  Google Scholar 

  3. Senthil Kumar P, Pastoriza-Santos I, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1):015606. doi:10.1088/0957-4484/19/01/015606

    Article  Google Scholar 

  4. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14(4):331–341. doi:10.1023/B:JOFL.0000031815.71450.74

    Article  Google Scholar 

  5. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. doi:10.4103/2229-5186.94314

    Article  Google Scholar 

  6. Alvarez-Puebla R, Liz-Marzán LM, García de Abajo FJ (2010) Light concentration at the nanometer scale. J Phys Chem Lett 1(16):2428–2434. doi:10.1021/jz100820m

    Article  Google Scholar 

  7. Rodríguez-Lorenzo L, Álvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131(13):4616–4618. doi:10.1021/ja809418t

    Article  Google Scholar 

  8. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, London

    Book  Google Scholar 

  9. Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926. doi:10.1126/science.272.5270.1924

    Article  Google Scholar 

  10. Schön G, Simon U (1995) A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid Polym Sci 273:202–218. doi:10.1007/BF00657826

    Article  Google Scholar 

  11. Bakr OM, Wunsch BH, Stellacci F (2006) High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 2006(18):3297–3301. doi:10.1021/cm060681i

    Article  Google Scholar 

  12. Lu L, Ai K, Ozaki Y (2008) Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape. Langmuir 2008(24):1058–1063. doi:10.1021/la702886q

    Article  Google Scholar 

  13. Alvarez-Puebla RA, Liz-Marzan LM (2010) SERS-based diagnosis and biodetection. Small 201(6):604–610. doi:10.1002/smll.200901820

    Article  Google Scholar 

  14. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17(8):2950–2962. doi:10.1016/j.bmc.2009.02.043

    Article  Google Scholar 

  15. Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanoparticles target cancer. Nano Today 2:18–29. doi:10.1016/S1748-0132(07)70016-6

    Article  Google Scholar 

  16. Chang C-C, Wu H-L, Kuo C-H, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574. doi:10.1021/cm8021984

    Article  Google Scholar 

  17. Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, Rodríguez-González B, García de Abajo FJ, Liz-Marzán LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18:2529–2534. doi:10.1002/adma.200600475

    Article  Google Scholar 

  18. Kwon K, Lee KY, Lee YW, Kim M, Heo J, Ahn SJ, Han SW (2007) Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J Phys Chem C 111:1161–1165. doi:10.1021/jp064317i

    Article  Google Scholar 

  19. Liu MZ, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200. doi:10.1021/jp054808n

    Article  Google Scholar 

  20. Zettsu N, McLellan JM, Wiley B, Yin Y, Li Z-Y, Xia Y (2006) Rhodium multipods: synthesis, stability, surface plasmonic properties, and their use as substrates for surface-enhanced Raman scattering. Angew Chem Int Ed 45(8):1288–1292. doi:10.1002/anie.200503174

    Article  Google Scholar 

  21. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi:10.1126/science.1077229

    Article  Google Scholar 

  22. Murphy CJ, Jana N (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82. doi:10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#

    Article  Google Scholar 

  23. Szejli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754. doi:10.1021/cr970022c

    Article  Google Scholar 

  24. Alvarez J, Liu J, Román E, Kaifer AE (2000) Water-soluble platinum and palladium nanoparticles modified with thiolated β-cyclodextrin. Chem Commun 2000:1151–1152. doi:10.1039/b002423f

    Article  Google Scholar 

  25. Huang T, Meng F, Qi L (2009) Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir 26(10):7582–7589. doi:10.1021/1a904393n

    Article  Google Scholar 

  26. Joseph D, Geckeler KE (2009) Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering. Langmuir 25:13224–13231. doi:10.1021/la9019052

    Article  Google Scholar 

  27. Kochkar H, Aouine M, Ghorbel A, Berhault G (2011) Shape-controlled synthesis of silver and palladium nanoparticles using β-cyclodextrin. J Phys Chem C 115(23):11364–11373. doi:10.1021/jp200662j

    Article  Google Scholar 

  28. Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D (2007) Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime. J Phys Chem C 111:5915–5925. doi:10.1021/jp0702752

    Article  Google Scholar 

  29. Csapo E, Oszko A, Varga E, Juhasz A, Buzas N, Korosi L, Majzik A, Dekany I (2012) Synthesis and characterization of Ag/Au alloy and core(Ag)–shell(Au) nanoparticles. Colloid Surf A Physicochem Eng Asp 415:281–287. doi:10.1016/j.colsurfa.2012.09.005

    Article  Google Scholar 

  30. Wu HY, Liu M, Huang MH (2006) Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles. J Phys Chem B 110:19291–19294. doi:10.1021/jp063711d

    Article  Google Scholar 

  31. Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan CR, Murray CB (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817. doi:10.1021/nn300315j

    Article  Google Scholar 

  32. Park K, Drummy LF, Wadams RC, Koerner H, Nepal D, Fabris L, Vaia RA (2013) Growth mechanism of gold nanorods. Chem Mater 25:555–563. doi:10.1021/cm303659q

    Article  Google Scholar 

  33. Bisson L, Boissière C, Nicole L, Grosso D, Jolivet JP, Thomazeau C, Uzio D, Berhault G, Sanchez C (2009) Formation of palladium nanostructures in a seed-mediated synthesis through an oriented attachment directed aggregation. Chem Mater 21:2668–2678. doi:10.1021/cm803421v

    Article  Google Scholar 

  34. Thomazeau C, Cseri T, Bisson L, Aguilhon J, Minh DP, Boissière C, Durupthy O, Sanchez C (2012) Nano design of alumina supported monometallic catalysts: a promising way to improve the selective hydrogenation of poly-unsaturated hydrocarbons. Top Catal 55:690–699. doi:10.1007/s11244-012-9868-1

    Article  Google Scholar 

  35. Berhault G, Kochkar H, Ghorbel A (2012) Shape-controlled synthesis of silver and palladium nanocrystals using β-cyclodextrin. Mater Res Soc Proc 1446:89–94. doi:10.1557/opl.2012.917

    Article  Google Scholar 

  36. Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17:6368–6374. doi:10.1021/la010530o

    Article  Google Scholar 

  37. Huang T, Meng F, Qi L (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. J Phys Chem C 113:13636–13642. doi:10.1021/jp903405y

    Article  Google Scholar 

  38. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2 72:1525–1568. doi:10.1039/F29767201525

    Article  Google Scholar 

  39. Zeman EJ, Schatz GC (1987) An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J Phys Chem 91:634–643. doi:10.1021/j100287a028

    Article  Google Scholar 

  40. Wokaun A, Gordon JP, Liao PF (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48:957–960. doi:10.1103/PhysRevLett.48.957

    Article  Google Scholar 

  41. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324. doi:10.1103/PhysRevE.62.4318

    Article  Google Scholar 

  42. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20. doi:10.1016/S0022-0728(77)80224-6

    Article  Google Scholar 

  43. Egyed O (1990) Spectroscopic studies on β-cyclodextrin. Vib Spectrosc 1:225–227. doi:10.1016/0924-2031(90)80041-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Ruíz, Dr. E. Flores, and Dr. J. A. Díaz for their valuable technical assistance. The authors are grateful to CONACyT for the financial support under grants 174689, CEMIE-Sol-P28, and PAPIIT IN104714. GAN thank CONACyT (259931) and DGAPA-UNAM for the scholarship at IRCELYON, Lyon, France. Finally, we thank Biól. M. I. Pérez for helping with the final English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Alonso-Nuñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castiello, F.R., Romo-Herrera, J.M., Farías, M.H. et al. “Green” seed-mediated synthesis and morphology of Au nanoparticles using β-cyclodextrin. Gold Bull 49, 45–51 (2016). https://doi.org/10.1007/s13404-016-0181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-016-0181-9

Keywords

Navigation