Skip to main content

Advertisement

Log in

Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis.

Conclusion

Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. X. Jin, Z. Demere, K. Nair, A. Ali, G.B. Ferraro, T. Natoli, A. Deik, L. Petronio, A.A. Tang, C. Zhu, L. Wang, D. Rosenberg, V. Mangena, J. Roth, K. Chung, R.K. Jain, C.B. Clish, M.G. Vander Heiden, T.R. Golub, A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. S. Valastyan, R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. SenGupta, C.A. Parent, J.E. Bear, The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. L.M. Machesky, H.R. Tang, Actin-based protrusions: promoters or inhibitors of cancer invasion? Cancer Cell 16, 5–7 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. D.A. Cruz Walma, Z. Chen, A.N. Bullock, K.M. Yamada, Ubiquitin ligases: guardians of mammalian development. Nat. Rev. Mol. Cell Biol. 23(5), 350–367 (2022)

  6. C. Pohl, I. Dikic, Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366, 818–822 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. T.E.T. Mevissen, D. Komander, Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. M.J. Clague, S. Urbé, D. Komander, Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20, 338–352 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. K.P. Lai, J. Chen, W.K.F. Tse, Role of deubiquitinases in human cancers: potential targeted therapy. Int. J. Mol. Sci. 21 (2020)

  10. Z. Xiao, P. Zhang, L. Ma, The role of deubiquitinases in breast cancer. Cancer Metastasis Rev. 35, 589–600 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Bonacci, M.J. Emanuele, Dissenting degradation: deubiquitinases in cell cycle and cancer. Semin. Cancer Biol. 67, 145–158 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M.T. Islam, F. Chen, H. Chen, The oncogenic role of ubiquitin specific peptidase (USP8) and its signaling pathways targeting for cancer therapeutics. Arch. Biochem. Biophys. 701, 108811 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. B. Artegiani, L. van Voorthuijsen, R.G.H. Lindeboom, D. Seinstra, I. Heo, P. Tapia, C. López-Iglesias, D. Postrach, T. Dayton, R. Oka, H. Hu, R. van Boxtel, J.H. van Es, J. Offerhaus, P.J. Peters, J. van Rheenen, M. Vermeulen, H. Clevers, Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927–943.e926 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. M. Murtaza, L.A. Jolly, J. Gecz, S.A. Wood, La FAM fatale: USP9X in development and disease. Cell Mol. Life Sci. 72, 2075–2089 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Masclef, O. Ahmed, B. Estavoyer, B. Larrivée, N. Labrecque, A. Nijnik, E.B. Affar, Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 28, 606–625 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J.R. Testa, M. Cheung, J. Pei, J.E. Below, Y. Tan, E. Sementino, N.J. Cox, A.U. Dogan, H.I. Pass, S. Trusa, M. Hesdorffer, M. Nasu, A. Powers, Z. Rivera, S. Comertpay, M. Tanji, G. Gaudino, H. Yang, M. Carbone, Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G.Z. Qiu, W. Sun, M.Z. Jin, J. Lin, P.G. Lu, W.L. Jin, The bad seed gardener: deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol. Ther. 172, 127–138 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. M. He, Z. Zhou, G. Wu, Q. Chen, Y. Wan, Emerging role of DUBs in tumor metastasis and apoptosis: therapeutic implication. Pharmacol. Ther. 177, 96–107 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. He, H.J. Lee, S. Saha, D. Ruan, H. Guo, C.H. Chan, Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 10, 285 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. J. Kim, F. Alavi Naini, Y. Sun, L. Ma, Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am. J. Cancer Res. 8, 1823–1836 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. W. Huang, X. Liu, Y. Zhang, M. Deng, G. Li, G. Chen, L. Yu, L. Jin, T. Liu, Y. Wang, Y. Chen, USP5 promotes breast cancer cell proliferation and metastasis by stabilizing HIF2α. J. Cell Physiol. 237(4), 2211–2219 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. D. Duan, M. Shang, Y. Han, J. Liu, J. Liu, S.H. Kong, J. Hou, B. Huang, J. Lu, Y. Zhang, EZH2-CCF-cGAS axis promotes breast cancer metastasis. Int. J. Mol. Sci. 23(3), 1788 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Liu, J. Feng, L. Li, L. Lin, J. Ji, C. Lin, L. Liu, N. Zhang, D. Duan, Z. Li, B. Huang, Y. Zhang, J. Lu, Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21, e48597 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. L. Zhang, F. Zhou, Y. Drabsch, R. Gao, B.E. Snaar-Jagalska, C. Mickanin, H. Huang, K.A. Sheppard, J.A. Porter, C.X. Lu, P. ten Dijke, USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat. Cell Biol. 14, 717–726 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. P.J. Eichhorn, L. Rodón, A. Gonzàlez-Juncà, A. Dirac, M. Gili, E. Martínez-Sáez, C. Aura, I. Barba, V. Peg, A. Prat, I. Cuartas, J. Jimenez, D. García-Dorado, J. Sahuquillo, R. Bernards, J. Baselga, J. Seoane, USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med. 18, 429–435 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. S. Liu, R. González-Prieto, M. Zhang, P.P. Geurink, R. Kooij, P.V. Iyengar, M. van Dinther, E. Bos, X. Zhang, S.E. Le Dévédec, B. van de Water, R.I. Koning, H.J. Zhu, W.E. Mesker, A.C.O. Vertegaal, H. Ovaa, L. Zhang, J.W.M. Martens, P. Ten Dijke, Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin. Cancer Res. 26, 1460–1473 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. D. Kim, A. Hong, H.I. Park, W.H. Shin, L. Yoo, S.J. Jeon, K.C. Chung, Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J. Cell Physiol. 232, 3664–3676 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. J. Qin, Z. Zhou, W. Chen, C. Wang, H. Zhang, G. Ge, M. Shao, D. You, Z. Fan, H. Xia, R. Liu, C. Chen, BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat. Commun. 6, 8471 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  29. G. Lambies, M. Miceli, C. Martínez-Guillamon, R. Olivera-Salguero, R. Peña, C.P. Frías, I. Calderón, B.S. Atanassov, S.Y.R. Dent, J. Arribas, A. García de Herreros, V.M. Díaz, TGFβ-activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of Snail1. Cancer Res. 79, 33–46 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. T. Liu, J. Yu, M. Deng, Y. Yin, H. Zhang, K. Luo, B. Qin, Y. Li, C. Wu, T. Ren, Y. Han, P. Yin, J. Kim, S. Lee, J. Lin, L. Zhang, J. Zhang, S. Nowsheen, L. Wang, J. Boughey, M.P. Goetz, J. Yuan, Z. Lou, CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat. Commun. 8, 13923 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. H. Zou, H. Chen, Z. Zhou, Y. Wan, Z. Liu, ATXN3 promotes breast cancer metastasis by deubiquitinating KLF4. Cancer Lett. 467, 19–28 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. L. Zhang, J. Qiang, X. Yang, D. Wang, A.U. Rehman, X. He, W. Chen, D. Sheng, L. Zhou, Y.Z. Jiang, T. Li, Y. Du, J. Feng, X. Hu, J. Zhang, X.C. Hu, Z.M. Shao, S. Liu, IL1R2 blockade suppresses breast tumorigenesis and progression by impairing USP15-dependent BMI1 stability. Adv. Sci. (Weinh.) 7, 1901728 (2020)

    CAS  PubMed  Google Scholar 

  33. Z. Zhang, Y. Fan, F. Xie, H. Zhou, K. Jin, L. Shao, W. Shi, P. Fang, B. Yang, H. van Dam, P. Ten Dijke, X. Zheng, X. Yan, J. Jia, M. Zheng, J. Jin, C. Ding, S. Ye, F. Zhou, L. Zhang, Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat. Commun. 8, 2116 (2017)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  34. Z. Zhang, J. Li, Y. Ou, G. Yang, K. Deng, Q. Wang, Z. Wang, W. Wang, Q. Zhang, H. Wang, W. Sun, P. Sun, S. Yang, CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct. Target. Ther. 5, 25 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Q. Lu, D. Lu, Z.M. Shao, D.Q. Li, Deubiquitinase ubiquitin-specific protease 9X regulates the stability and function of E3 ubiquitin ligase ring finger protein 115 in breast cancer cells. Cancer Sci. 110, 1268–1278 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Shang, J. Zhao, Q. Zhang, C. Cao, S. Tian, K. Zhang, L. Liu, L. Shi, N. Yu, S. Yang, USP9X-mediated deubiquitination of B-cell CLL/lymphoma 9 potentiates Wnt signaling and promotes breast carcinogenesis. J. Biol. Chem. 294, 9844–9857 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Ma, M. Tang, L. Zhang, B. Wang, Z. Yang, Y. Liu, G. Xu, L. Wu, T. Jing, X. Xu, S. Yang, Y. Liu, USP1 inhibition destabilizes KPNA2 and suppresses breast cancer metastasis. Oncogene 38, 2405–2419 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. Y. Goto, L. Zeng, C.J. Yeom, Y. Zhu, A. Morinibu, K. Shinomiya, M. Kobayashi, K. Hirota, S. Itasaka, M. Yoshimura, K. Tanimoto, M. Torii, T. Sowa, T. Menju, M. Sonobe, H. Kakeya, M. Toi, H. Date, E.M. Hammond, M. Hiraoka, H. Harada, UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat. Commun. 6, 6153 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  39. L. Yuan, Y. Lv, H. Li, H. Gao, S. Song, Y. Zhang, G. Xing, X. Kong, L. Wang, Y. Li, T. Zhou, D. Gao, Z.X. Xiao, Y. Yin, W. Wei, F. He, L. Zhang, Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat. Cell Biol. 17, 1169–1181 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Zhou, H. Zhou, L. Ponzoni, A. Luo, R. Zhu, M. He, Y. Huang, K.L. Guan, I. Bahar, Z. Liu, Y. Wan, EIF3H orchestrates hippo pathway-mediated oncogenesis via catalytic control of YAP stability. Cancer Res. 80, 2550–2563 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Z. Zhang, J. Du, S. Wang, L. Shao, K. Jin, F. Li, B. Wei, W. Ding, P. Fu, H. van Dam, A. Wang, J. Jin, C. Ding, B. Yang, M. Zheng, X.H. Feng, K.L. Guan, L. Zhang, OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol. Cell 73, 7–21.e27 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. B. Li, Z.P. Qi, D.L. He, Z.H. Chen, J.Y. Liu, M.W. Wong, J.W. Zhang, E.P. Xu, Q. Shi, S.L. Cai, D. Sun, L.Q. Yao, P.H. Zhou, Y.S. Zhong, NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. J. Exp. Clin. Cancer Res. 40, 126 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Xing, X.X. Lu, P.D. Guo, T. Shen, S. Zhang, X.S. He, W.J. Gan, X.M. Li, J.R. Wang, Y.Y. Zhao, H. Wu, J.M. Li, Ubiquitin-specific protease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis. Cancer Res. 76, 83–95 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Y.Y. Huang, C.M. Zhang, Y.B. Dai, J.G. Lin, N. Lin, Z.X. Huang, T.W. Xu, USP11 facilitates colorectal cancer proliferation and metastasis by regulating IGF2BP3 stability. Am. J. Transl. Res. 13, 480–496 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Sun, B. Ou, S. Zhao, X. Liu, L. Song, X. Liu, R. Wang, Z. Peng, USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine 48, 236–247 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D. Miao, Y. Wang, Y. Jia, J. Tong, S. Jiang, L. Liu, ZRANB1 enhances stem-cell-like features and accelerates tumor progression by regulating Sox9-mediated USP22/Wnt/β-catenin pathway in colorectal cancer. Cell. Signal. 90, 110200 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. S.I. Yun, H.K. Hong, S.Y. Yeo, S.H. Kim, Y.B. Cho, K.K. Kim, Ubiquitin-specific protease 21 promotes colorectal cancer metastasis by acting as a Fra-1 deubiquitinase. Cancers 12(1), 207 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Wu, K. Luo, F. Zhao, P. Yin, Y. Song, M. Deng, J. Huang, Y. Chen, L. Li, S. Lee, J. Kim, Q. Zhou, X. Tu, S. Nowsheen, Q. Luo, X. Gao, Z. Lou, Z. Liu, J. Yuan, USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization. Cell Death Differ. 25, 1855–1869 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. Zhong, M. Zhao, Y. Ma, Q. Luo, J. Liu, J. Wang, X. Yuan, J. Sang, C. Huang, UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. Int.J. Mol. Med. 30, 430–436 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. S. Haq, S. Das, D.H. Kim, A.P. Chandrasekaran, S.H. Hong, K.S. Kim, S. Ramakrishna, The stability and oncogenic function of LIN28A are regulated by USP28. Biochim. Biophys. Acta Mol. Basis Dis. 1865(3), 599–610 (2019)

    Article  CAS  PubMed  Google Scholar 

  51. A.P. Chandrasekaran, B. Suresh, N. Sarodaya, N.R. Ko, S.J. Oh, K.S. Kim, S. Ramakrishna, Ubiquitin specific protease 29 functions as an oncogene promoting tumorigenesis in colorectal carcinoma. Cancers 13(11), 2706 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. W. Xu, B. Chen, D. Ke, X. Chen, DUSP4 directly deubiquitinates and stabilizes Smad4 protein, promoting proliferation and metastasis of colorectal cancer cells. Aging 12, 17634–17646 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. L. Yu, L. Dong, Y. Wang, L. Liu, H. Long, H. Li, J. Li, X. Yang, Z. Liu, G. Duan, X. Dai, Z. Lin, Reversible regulation of SATB1 ubiquitination by USP47 and SMURF2 mediates colon cancer cell proliferation and tumor progression. Cancer Lett. 448, 40–51 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. B.J. Choi, S.A. Park, S.Y. Lee, Y.N. Cha, Y.J. Surh, Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of Snail: a potential role of Sox9. Sci. Rep. 7, 15918 (2017)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. J.M. Fraile, D. Campos-Iglesias, F. Rodríguez, Y. Español, J.M. Freije, The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget 7, 74427–74434 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  56. X. Chen, W. Wang, Y. Li, Y. Huo, H. Zhang, F. Feng, W. Xi, T. Zhang, J. Gao, F. Yang, S. Chen, A. Yang, T. Wang, MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling. J. Exp. Clin. Cancer Res. 40, 341 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  57. K. Watanabe, S. Yokoyama, N. Kaneto, T. Hori, Y. Iwakami, S. Kato, Y. Hayakawa, H. Sakurai, J. Fukuoka, I. Saiki, COP9 signalosome subunit 5 regulates cancer metastasis by deubiquitinating SNAIL. Oncotarget 9, 20670–20680 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Q. Li, Q. Chao, Y. Liu, J. Fang, J. Xie, J. Zhen, Y. Ding, B. Fu, Y. Ke, F. Xiao, H. Wu, Z. Huang, H. Hao, D. Huang, Deubiquitinase ZRANB1 drives hepatocellular carcinoma progression through SP1-LOXL2 axis. Am. J. Cancer Res. 11, 4807–4825 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Y. Liao, Z. Shao, Y. Liu, X. Xia, Y. Deng, C. Yu, W. Sun, W. Kong, X. He, F. Liu, Z. Guo, G. Chen, D. Tang, H. Gan, J. Liu, H. Huang, USP1-dependent RPS16 protein stability drives growth and metastasis of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 40, 201 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Y. Li, Y. Xu, C. Gao, Y. Sun, K. Zhou, P. Wang, J. Cheng, W. Guo, C. Ya, J. Fan, X. Yang, USP1 maintains the survival of liver circulating tumor cells by deubiquitinating and stabilizing TBLR1. Front. Oncol. 10, 554809 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  61. B. Xiong, J. Huang, Y. Liu, M. Zou, Z. Zhao, J. Gong, X. Wu, C. Qiu, Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol. (Dordr.) 44, 329–343 (2021)

    Article  CAS  PubMed  Google Scholar 

  62. C. Qiu, Y. Liu, Y. Mei, M. Zou, Z. Zhao, M. Ye, X. Wu, Ubiquitin-specific protease 4 promotes metastasis of hepatocellular carcinoma by increasing TGF-β signaling-induced epithelial-mesenchymal transition. Aging 10, 2783–2799 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. T. Li, B. Yan, Y. Ma, J. Weng, S. Yang, N. Zhao, X. Wang, X. Sun, Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis. 9, 148 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  64. M.J. Kim, B. Choi, J.Y. Kim, Y. Min, D.H. Kwon, J. Son, J.S. Lee, J.S. Lee, E. Chun, K.Y. Lee, USP8 regulates liver cancer progression via the inhibition of TRAF6-mediated signal for NF-κB activation and autophagy induction by TLR4. Transl. Oncol. 15, 101250 (2022)

    Article  CAS  PubMed  Google Scholar 

  65. T. Yuan, Z. Chen, F. Yan, M. Qian, H. Luo, S. Ye, J. Cao, M. Ying, X. Dai, R. Gai, B. Yang, Q. He, H. Zhu, Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol. Oncol. 14, 197–210 (2020)

    Article  CAS  PubMed  Google Scholar 

  66. H. Zhu, F. Yan, T. Yuan, M. Qian, T. Zhou, X. Dai, J. Cao, M. Ying, X. Dong, Q. He, B. Yang, USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 80, 2204–2216 (2020)

    Article  CAS  PubMed  Google Scholar 

  67. L. Qiao, Q. Zhang, Z. Sun, Q. Liu, Z. Wu, W. Hu, S. Bao, Q. Yang, L. Liu, The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway. Cancer Lett. 514, 63–78 (2021)

    Article  CAS  PubMed  Google Scholar 

  68. C. Zhang, C. Xie, X. Wang, Y. Huang, S. Gao, J. Lu, Y. Lu, S. Zhang, Aberrant USP11 expression regulates NF90 to promote proliferation and metastasis in hepatocellular carcinoma. Am. J. Cancer Res. 10, 1416–1428 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. S. Gao, T. Chen, L. Li, X. Liu, Y. Liu, J. Zhao, Q. Lu, Z. Zeng, Q. Xu, D. Huang, K. Tu, Hypoxia-inducible ubiquitin specific peptidase 13 contributes to tumor growth and metastasis via enhancing the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB pathway in hepatocellular carcinoma. Front. Cell Dev. Biol. 8, 587389 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  70. Y. Zhang, J. Jia, W. Jin, J. Cao, T. Fu, D. Ma, Y. Zhang, Lidocaine inhibits the proliferation and invasion of hepatocellular carcinoma by downregulating USP14 induced PI3K/Akt pathway. Pathol. Res. Pract. 216, 152963 (2020)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Qiu, D. Huang, Y. Sheng, J. Huang, N. Li, S. Zhang, Z. Hong, X. Yin, J. Yan, Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp. Cell. Res. 405, 112646 (2021)

    Article  CAS  PubMed  Google Scholar 

  72. M. Huang, H. Xiong, D. Luo, B. Xu, H. Liu, CSN5 upregulates glycolysis to promote hepatocellular carcinoma metastasis via stabilizing the HK2 protein. Exp. Cell. Res. 388, 111876 (2020)

    Article  CAS  PubMed  Google Scholar 

  73. Q. Ni, J. Chen, X. Li, X. Xu, N. Zhang, A. Zhou, B. Zhou, Q. Lu, Z. Chen, Expression of OTUB1 in hepatocellular carcinoma and its effects on HCC cell migration and invasion. Acta Biochim. Biophys. Sin. 49, 680–688 (2017)

    Article  CAS  PubMed  Google Scholar 

  74. P. Xie, Y. Chen, H. Zhang, G. Zhou, Q. Chao, J. Wang, Y. Liu, J. Fang, J. Xie, J. Zhen, Z. Wang, L. Hao, D. Huang, The deubiquitinase OTUD3 stabilizes ACTN4 to drive growth and metastasis of hepatocellular carcinoma. Aging 13, 19317–19338 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C. Qiu, K. Liu, S. Zhang, S. Gao, W. Chen, D. Li, Y. Huang, Bisdemethoxycurcumin inhibits hepatocellular carcinoma proliferation through Akt inactivation via CYLD-mediated deubiquitination. Drug Des. Devel. Ther. 14, 993–1001 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. J. Lv, S. Zhang, H. Wu, J. Lu, Y. Lu, F. Wang, W. Zhao, P. Zhan, J. Lu, Q. Fang, C. Xie, Z. Yin, Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2. Cancer Lett. 469, 22–34 (2020)

    Article  CAS  PubMed  Google Scholar 

  77. B. Wang, X. Xu, Z. Yang, L. Zhang, Y. Liu, A. Ma, G. Xu, M. Tang, T. Jing, L. Wu, Y. Liu, POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine 41, 320–332 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  78. Y. Zhu, C. Qu, X. Hong, Y. Jia, M. Lin, Y. Luo, F. Lin, X. Xie, X. Xie, J. Huang, Q. Wu, X. Qiu, D. Piao, Y. Xing, T. Yu, Y. Lu, Q. Huang, C. Yu, J. Jin, Z. Zhang, Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 26, 306–320 (2019)

    Article  CAS  PubMed  Google Scholar 

  79. J. Li, X. Xiao, H. Wang, W. Wang, Y. Ou, Z. Wang, H. Jiang, Y. Liu, Z. Zhang, S. Yang, CDK4/6-USP51 axis regulates lung adenocarcinoma metastasis through ZEB1. Cancer Gene Ther. 29(8–9), 1181–1192 (2022)

    Article  CAS  PubMed  Google Scholar 

  80. J. Cai, M. Li, X. Wang, L. Li, Q. Li, Z. Hou, H. Jia, S. Liu, USP37 promotes lung cancer cell migration by stabilizing snail protein via deubiquitination. Front. Genet. 10, 1324 (2019)

    Article  CAS  PubMed  Google Scholar 

  81. J. Yuan, G. Zhang, X. Li, Q. Ma, W. Cheng, W. Wang, B. Zhang, T. Hu, G. Song, Knocking down USP39 inhibits the growth and metastasis of non-small-cell lung cancer cells through activating the p53 pathway. Int. J. Mol. Sci. 21(23), 8949 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. J. Ji, S. Yang, L. Zu, Y. Li, Y. Li, Deubiquitinating enzyme USP41 promotes lung cancer cell proliferation and migration. Thorac. Cancer 12, 1041–1047 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. B. Zhang, C. Yang, R. Wang, J. Wu, Y. Zhang, D. Liu, X. Sun, X. Li, H. Ren, S. Qin, OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. J. Exp. Clin. Cancer Res. 39, 244 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  84. F. Li, Q. Hu, T. He, J. Xu, Y. Yi, S. Xie, L. Ding, M. Fu, R. Guo, Z.J. Xiao, M. Niu, The deubiquitinase USP4 stabilizes Twist1 protein to promote lung cancer cell stemness. Cancers 12(6), 1582 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. E.J. Jang, J.Y. Sung, H.E. Yoo, H. Jang, J. Shim, E.S. Oh, S.H. Goh, Y.N. Kim, FAM188B downregulation sensitizes lung cancer cells to anoikis via EGFR downregulation and inhibits tumor metastasis in vivo. Cancers 13(2), 247 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. X.Y. Kang, J. Zhang, L. Tang, L. Huang, J. Tong, Q. Fu, OTU deubiquitinase 5 inhibits the progression of non-small cell lung cancer via regulating p53 and PDCD5. Chem. Biol. Drug Des. 96, 790–800 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. R. Yang, N. Liu, L. Chen, Y. Jiang, Y. Shi, C. Mao, Y. Liu, M. Wang, W. Lai, H. Tang, M. Gao, D. Xiao, X. Wang, H. Zhou, C.E. Tang, W. Liu, F. Yu, Y. Cao, Q. Yan, S. Liu, Y. Tao, GIAT4RA functions as a tumor suppressor in non-small cell lung cancer by counteracting Uchl3-mediated deubiquitination of LSH. Oncogene 38, 7133–7145 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. T. Wang, B. Jing, B. Sun, Y. Liao, H. Song, D. Xu, W. Guo, K. Li, M. Hu, S. Liu, J. Ling, Y. Kuang, Y. Feng, B.P. Zhou, J. Deng, Stabilization of PTGES by deubiquitinase USP9X promotes metastatic features of lung cancer via PGE(2) signaling. Am. J. Cancer Res. 9, 1145–1160 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. J. Li, D. Cheng, M. Zhu, H. Yu, Z. Pan, L. Liu, Q. Geng, H. Pan, M. Yan, M. Yao, OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics 9, 179–195 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Y. Wang, S. Zhang, H. Bao, S. Mu, B. Zhang, H. Ma, S. Ma, MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int. 18, 64 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  91. Q. Luo, X. Wu, Y. Nan, W. Chang, P. Zhao, Y. Zhang, D. Su, Z. Liu, TRIM32/USP11 balances ARID1A stability and the oncogenic/tumor-suppressive status of squamous cell carcinoma. Cell Rep. 30, 98–111.e115 (2020)

    Article  PubMed  Google Scholar 

  92. T. Zhang, J. Zheng, L. Qiao, W. Zhao, Deubiquitinase USP13 promotes the epithelial-mesenchymal transition and metastasis in gastric cancer by maintaining Snail protein. Pathol. Res. Pract. 229, 153705 (2022)

    Article  CAS  PubMed  Google Scholar 

  93. N. Li, L. Wu, X. Zuo, H. Luo, Y. Sheng, J. Yan, USP1 promotes GC metastasis via stabilizing ID2. Dis. Markers 2021, 3771990 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  94. Z. Zhang, X. Hu, J. Kuang, J. Liao, Q. Yuan, LncRNA DRAIC inhibits proliferation and metastasis of gastric cancer cells through interfering with NFRKB deubiquitination mediated by UCHL5. Cell. Mol. Biol. Lett. 25, 29 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. X. Wu, M. Liu, H. Zhu, J. Wang, W. Dai, J. Li, D. Zhu, W. Tang, Y. Xiao, J. Lin, W. Zhang, Y. Sun, Y. Zhang, Y. Chen, G. Li, A. Li, L. Xiang, S. Liu, J. Wang, Ubiquitin-specific protease 3 promotes cell migration and invasion by interacting with and deubiquitinating SUZ12 in gastric cancer. J. Exp. Clin. Cancer Res. 38, 277 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  96. Y. Xia, L. Wang, Z. Xu, R. Kong, F. Wang, K. Yin, J. Xu, B. Li, Z. He, L. Wang, H. Xu, D. Zhang, L. Yang, J.Y. Wu, Z. Xu, Reduced USP33 expression in gastric cancer decreases inhibitory effects of Slit2-Robo1 signalling on cell migration and EMT. Cell Prolif. 52, e12606 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  97. L.J. Zhao, T. Zhang, X.J. Feng, J. Chang, F.Z. Suo, J.L. Ma, Y.J. Liu, Y. Liu, Y.C. Zheng, H.M. Liu, USP28 contributes to the proliferation and metastasis of gastric cancer. J. Cell Biochem. 120(5), 7657–7666 (2018)

    Article  PubMed  Google Scholar 

  98. K. Hou, Z. Zhu, Y. Wang, C. Zhang, S. Yu, Q. Zhu, B. Yan, Overexpression and biological function of ubiquitin-specific protease 42 in gastric cancer. PLoS ONE 11, e0152997 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  99. Y.Y. Gu, M. Yang, M. Zhao, Q. Luo, L. Yang, H. Peng, J. Wang, S.K. Huang, Z.X. Zheng, X.H. Yuan, P. Liu, C.Z. Huang, The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36, 8379–8387 (2015)

    Article  CAS  PubMed  Google Scholar 

  100. K. Shi, J.Z. Zhang, L. Yang, N.N. Li, Y. Yue, X.H. Du, X.Z. Zhang, Y.C. Lu, D. Guo, Protein deubiquitylase USP3 stabilizes Aurora A to promote proliferation and metastasis of esophageal squamous cell carcinoma. BMC Cancer 21, 1196 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. C. Jing, X. Li, M. Zhou, S. Zhang, Q. Lai, D. Liu, B. Ye, L. Li, Y. Wu, H. Li, K. Yue, P. Chen, X. Yao, Y. Wu, Y. Duan, X. Wang, The PSMD14 inhibitor Thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation. Theranostics 11, 5847–5862 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. L. Li, H. Zhou, R. Zhu, Z. Liu, USP26 promotes esophageal squamous cell carcinoma metastasis through stabilizing Snail. Cancer Lett. 448, 52–60 (2019)

    Article  CAS  PubMed  Google Scholar 

  103. X. Guo, R. Zhu, A. Luo, H. Zhou, F. Ding, H. Yang, Z. Liu, EIF3H promotes aggressiveness of esophageal squamous cell carcinoma by modulating Snail stability. J. Exp. Clin. Cancer Res. 39, 175 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. C. Song, J. Peng, Y. Wei, J. Shao, X. Chen, X. Zhang, J. Xu, USP18 promotes tumor metastasis in esophageal squamous cell carcinomas via deubiquitinating ZEB1. Exp. Cell. Res. 409, 112884 (2021)

    Article  CAS  PubMed  Google Scholar 

  105. M. Tian, R. Zhu, F. Ding, Z. Liu, Ubiquitin-specific peptidase 46 promotes tumor metastasis through stabilizing ENO1 in human esophageal squamous cell carcinoma. Exp. Cell. Res. 395, 112188 (2020)

    Article  CAS  PubMed  Google Scholar 

  106. J. Sun, Y. Deng, J. Shi, W. Yang, MicroRNA-542-3p represses OTUB1 expression to inhibit migration and invasion of esophageal cancer cells. Mol. Med. Rep. 21, 35–42 (2020)

    CAS  PubMed  Google Scholar 

  107. W. Wang, J. Wang, H. Yan, K. Zhang, Y. Liu, Upregulation of USP11 promotes epithelial-to-mesenchymal transition by deubiquitinating Snail in ovarian cancer. Oncol. Rep. 41, 1739–1748 (2019)

    CAS  PubMed  Google Scholar 

  108. R. Zhu, Y. Liu, H. Zhou, L. Li, Y. Li, F. Ding, X. Cao, Z. Liu, Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma. Cancer Lett. 418, 125–134 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. X. Lei, X. Li, H. Chen, Z. Liu, USP48 sustains chemoresistance and metastasis in ovarian cancer. Curr. Cancer Drug Targets 20, 689–699 (2020)

    Article  CAS  PubMed  Google Scholar 

  110. K. Hong, L. Hu, X. Liu, J.M. Simon, T.S. Ptacek, X. Zheng, C. Liao, A.S. Baldwin, Q. Zhang, USP37 promotes deubiquitination of HIF2α in kidney cancer. Proc. Natl. Acad. Sci. U. S. A. 117, 13023–13032 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. X. Meng, Z. Xiong, W. Xiao, C. Yuan, C. Wang, Y. Huang, J. Tong, J. Shi, Z. Chen, C. Liu, K. Xie, H. Xiong, K. Chen, H. Yang, X. Zhang, Downregulation of ubiquitin-specific protease 2 possesses prognostic and diagnostic value and promotes the clear cell renal cell carcinoma progression. Ann. Transl. Med. 8, 319 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  112. D. Gui, Z. Dong, W. Peng, W. Jiang, G. Huang, G. Liu, Z. Ye, Y. Wang, Z. Xu, J. Fu, S. Luo, Y. Zhao, Ubiquitin-specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF-κB pathway inactivation. Cancer Med. 10, 3674–3688 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. E. Kobayashi, D. Hwang, A. Bheda-Malge, C.B. Whitehurst, A.V. Kabanov, S. Kondo, M. Aga, T. Yoshizaki, J.S. Pagano, M. Sokolsky, J. Shakelford, Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int. J. Mol. Sci. 20(15), 3733 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. L. Feng, J. Zhang, M. Sun, F. Qiu, W. Chen, W. Qiu, Tumor suppressor LINC02487 inhibits oral squamous cell carcinoma cell migration and invasion through the USP17-SNAI1 axis. Front. Oncol. 10, 559808 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  115. W.L. Ge, J.F. Xu, J. Hu, Regulation of oral squamous cell carcinoma proliferation through crosstalk between SMAD7 and CYLD. Cell Physiol. Biochem. 38, 1209–1217 (2016)

    Article  CAS  PubMed  Google Scholar 

  116. S. Yokoyama, Y. Iwakami, Z. Hang, R. Kin, Y. Zhou, Y. Yasuta, A. Takahashi, Y. Hayakawa, H. Sakurai, Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization. Sci. Rep. 10, 19214 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. Y. Iwakami, S. Yokoyama, K. Watanabe, Y. Hayakawa, STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem. Biophys. Res. Commun. 507, 484–488 (2018)

    Article  CAS  PubMed  Google Scholar 

  118. W. Guo, J. Ma, T. Pei, T. Zhao, S. Guo, X. Yi, Y. Liu, S. Wang, G. Zhu, Z. Jian, T. Gao, C. Li, W. Liao, Q. Shi, Up-regulated deubiquitinase USP4 plays an oncogenic role in melanoma. J. Cell Mol. Med. 22, 2944–2954 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. M. Zhan, X. Sun, J. Liu, Y. Li, Y. Li, X. He, Z. Zhou, L. Lu, Usp7 promotes medulloblastoma cell survival and metastasis by activating Shh pathway. Biochem. Biophys. Res. Commun. 484, 429–434 (2017)

    Article  CAS  PubMed  Google Scholar 

  120. H. Ke, C.K. Augustine, V.D. Gandham, J.Y. Jin, D.S. Tyler, S.K. Akiyama, R.P. Hall, J.Y. Zhang, CYLD inhibits melanoma growth and progression through suppression of the JNK/AP-1 and β1-integrin signaling pathways. J. Invest. Dermatol. 133, 221–229 (2013)

    Article  CAS  PubMed  Google Scholar 

  121. R. Massoumi, S. Kuphal, C. Hellerbrand, B. Haas, P. Wild, T. Spruss, A. Pfeifer, R. Fässler, A.K. Bosserhoff, Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J. Exp. Med. 206, 221–232 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. H.J. Kim, V. Magesh, J.J. Lee, S. Kim, U.G. Knaus, K.J. Lee, Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget 6, 16287–16303 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  123. H.T. Wu, Y.C. Kuo, J.J. Hung, C.H. Huang, W.Y. Chen, T.Y. Chou, Y. Chen, Y.J. Chen, Y.J. Chen, W.C. Cheng, S.C. Teng, K.J. Wu, K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression. Nat. Commun. 7, 13644 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. J.E. Lee, C.M. Park, J.H. Kim, USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet. Mol. Biol. 43, e20190338 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Y. Wang, Z. Ou, Y. Sun, S. Yeh, X. Wang, J. Long, C. Chang, Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 36, 1644–1654 (2017)

    Article  CAS  PubMed  Google Scholar 

  126. H.M. Song, J.E. Lee, J.H. Kim, Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochem. Biophys. Res. Commun. 452, 722–727 (2014)

    Article  CAS  PubMed  Google Scholar 

  127. S. Lei, Z. He, T. Chen, X. Guo, Z. Zeng, Y. Shen, J. Jiang, Long noncoding RNA 00976 promotes pancreatic cancer progression through OTUD7B by sponging miR-137 involving EGFR/MAPK pathway. J. Exp. Clin. Cancer Res. 38, 470 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. F. Ma, H. Wang, K. Liu, Z. Wang, S. Chen, CSN6 inhibition suppresses pancreatic adenocarcinoma metastasis via destabilizing the c-Fos protein. Exp. Cell. Res. 391, 112004 (2020)

    Article  CAS  PubMed  Google Scholar 

  129. J. Li, H. Li, W. Zhu, B. Zhou, J. Ying, J. Wu, H. Zhang, H. Sun, S. Gao, Deubiquitinase inhibitor degrasyn suppresses metastasis by targeting USP5-WT1-E-cadherin signalling pathway in pancreatic ductal adenocarcinoma. J. Cell Mol. Med. 24, 1370–1382 (2020)

    Article  CAS  PubMed  Google Scholar 

  130. J. Lian, C. Liu, X. Guan, B. Wang, Y. Yao, D. Su, Y. Ma, L. Fang, Y. Zhang, Ubiquitin specific peptidase 5 enhances STAT3 signaling and promotes migration and invasion in Pancreatic Cancer. J. Cancer 11, 6802–6811 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. X. Liu, B. Chen, J. Chen, Z. Su, S. Sun, Deubiquitinase USP10 maintains Cyr61 expression via YAP1 to augment immune escape and metastasis of PAAD. Cancer Sci. 113(5), 1868–1879 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Y. Li, J. Zhou, USP5 promotes uterine corpus endometrial carcinoma cell growth and migration via mTOR/4EBP1 activation. Cancer Manag. Res. 13, 3913–3924 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. P.P. Han, G.Q. Zhang, L. Li, L. Yue, Downregulation of USP33 inhibits Slit/Robo signaling pathway and is associated with poor patient survival of glioma. J. Neurosurg. Sci. (2020)

  134. S.A. Vilchez Mercedes, F. Bocci, H. Levine, J.N. Onuchic, M.K. Jolly, P.K. Wong, Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21, 592–604 (2021)

    Article  CAS  PubMed  Google Scholar 

  135. A. Lardennois, G. Pásti, T. Ferraro, F. Llense, P. Mahou, J. Pontabry, D. Rodriguez, S. Kim, S. Ono, E. Beaurepaire, C. Gally, M. Labouesse, An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature 573, 266–270 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  136. J. Gao, F. Nakamura, Actin-associated proteins and small molecules targeting the actin cytoskeleton. Int. J. Mol. Sci. 23(4), 2118 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. C. Mondal, J.S. Di Martino, J.J. Bravo-Cordero, Actin dynamics during tumor cell dissemination. Int. Rev. Cell Mol. Biol. 360, 65–98 (2021)

    Article  CAS  PubMed  Google Scholar 

  138. A.J. Ridley, Life at the leading edge. Cell 145, 1012–1022 (2011)

    Article  CAS  PubMed  Google Scholar 

  139. A. Callan-Jones, Self-organization in amoeboid motility. Front. Cell Dev. Biol. 10, 1000071 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  140. Y.J. Liu, M. Le Berre, F. Lautenschlaeger, P. Maiuri, A. Callan-Jones, M. Heuzé, T. Takaki, R. Voituriez, M. Piel, Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015)

    Article  CAS  PubMed  Google Scholar 

  141. M. Lintz, A. Muñoz, C.A. Reinhart-King, The mechanics of single cell and collective migration of tumor cells. J. Biomech. Eng. 139, 0210051–0210059 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  142. R. Mayor, S. Etienne-Manneville, The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17, 97–109 (2016)

    Article  CAS  PubMed  Google Scholar 

  143. K. Skruber, T.A. Read, E.A. Vitriol, Reconsidering an active role for G-actin in cytoskeletal regulation. J. Cell Sci. 131(1), jcs203760 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  144. A. Gaertner, A. Wegner, Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin. J. Muscle Res. Cell. Motil. 12, 27–36 (1991)

    Article  CAS  PubMed  Google Scholar 

  145. R. Dominguez, K.C. Holmes, Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. C.A. Schoenenberger, H.G. Mannherz, B.M. Jockusch, Actin: from structural plasticity to functional diversity. Eur. J. Cell Biol. 90, 797–804 (2011)

    Article  CAS  PubMed  Google Scholar 

  147. E.D. Korn, M.F. Carlier, D. Pantaloni, Actin polymerization and ATP hydrolysis. Science 238, 638–644 (1987)

    Article  CAS  PubMed  ADS  Google Scholar 

  148. C.G. Dos Remedios, D. Chhabra, M. Kekic, I.V. Dedova, M. Tsubakihara, D.A. Berry, N.J. Nosworthy, Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. 83, 433–473 (2003)

    Article  CAS  PubMed  Google Scholar 

  149. T.M. Svitkina, G.G. Borisy, Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. D. Pantaloni, R. Boujemaa, D. Didry, P. Gounon, M.F. Carlier, The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nat. Cell Biol. 2, 385–391 (2000)

    Article  CAS  PubMed  Google Scholar 

  151. A.W. Kinley, S.A. Weed, A.M. Weaver, A.V. Karginov, E. Bissonette, J.A. Cooper, J.T. Parsons, Cortactin interacts with WIP in regulating Arp2/3 activation and membrane protrusion. Curr. Biol. 13, 384–393 (2003)

    Article  CAS  PubMed  Google Scholar 

  152. A. Bisaria, A. Hayer, D. Garbett, D. Cohen, T. Meyer, Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science 368, 1205–1210 (2020)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. C. Chan, C.C. Beltzner, T.D. Pollard, Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 19, 537–545 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Q. Chen, T.D. Pollard, Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr. Biol. 23, 1154–1162 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Z. Ostrowska, J. Moraczewska, Cofilin - a protein controlling dynamics of actin filaments. Postepy Hig. Med. Dosw. (Online) 71, 339–351 (2017)

    Article  PubMed  Google Scholar 

  156. V. DesMarais, M. Ghosh, R. Eddy, J. Condeelis, Cofilin takes the lead. J. Cell Sci. 118, 19–26 (2005)

    Article  CAS  PubMed  Google Scholar 

  157. S. Seetharaman, S. Etienne-Manneville, Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 30, 720–735 (2020)

    Article  CAS  PubMed  Google Scholar 

  158. Y. Moshfegh, J.J. Bravo-Cordero, V. Miskolci, J. Condeelis, L. Hodgson, A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat. Cell Biol. 16, 574–586 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. M. Krause, A. Gautreau, Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590 (2014)

    Article  CAS  PubMed  Google Scholar 

  160. K.M. Alblazi, C.H. Siar, Cellular protrusions–lamellipodia, filopodia, invadopodia and podosomes–and their roles in progression of orofacial tumours: current understanding. Asian Pac. J Cancer Prev. 16, 2187–2191 (2015)

    Article  PubMed  Google Scholar 

  161. A.J. Ridley, Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006)

    Article  CAS  PubMed  Google Scholar 

  162. E. Foxall, A. Pipili, G.E. Jones, C.M. Wells, Significance of kinase activity in the dynamic invadosome. Eur. J. Cell Biol. 95, 483–492 (2016)

    Article  CAS  PubMed  Google Scholar 

  163. S. Etienne-Manneville, A. Hall, Rho GTPases in cell biology. Nature 420, 629–635 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  164. Y. Yoo, H.J. Ho, C. Wang, J.L. Guan, Tyrosine phosphorylation of cofilin at Y68 by v-Src leads to its degradation through ubiquitin-proteasome pathway. Oncogene 29, 263–272 (2010)

    Article  CAS  PubMed  Google Scholar 

  165. A. Deglincerti, Y. Liu, D. Colak, U. Hengst, G. Xu, S.R. Jaffrey, Coupled local translation and degradation regulate growth cone collapse. Nat. Commun. 6, 6888 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  166. X. Ma, Y. Dang, X. Shao, X. Chen, F. Wu, Y. Li, Ubiquitination and long non-coding RNAs regulate actin cytoskeleton regulators in cancer progression. Int. J. Mol. Sci. 20(12), 2997 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. S. Hussain, Y. Zhang, P.J. Galardy, DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 8, 1688–1697 (2009)

    Article  CAS  PubMed  Google Scholar 

  168. R. Pfoh, I.K. Lacdao, V. Saridakis, Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr.-Relat. Cancer 22, T35–54 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Y. Xue, M. Li, J. Hu, Y. Song, W. Guo, C. Miao, D. Ge, Y. Hou, X. Wang, X. Huang, T. Liu, X. Zhang, Q. Huang, Ca(v)2.2-NFAT2-USP43 axis promotes invadopodia formation and breast cancer metastasis through cortactin stabilization. Cell Death Dis. 13, 812 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. K. Itoh, K. Yoshioka, H. Akedo, M. Uehata, T. Ishizaki, S. Narumiya, An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat. Med. 5, 221–225 (1999)

    Article  CAS  PubMed  Google Scholar 

  171. R.G. Hodge, A.J. Ridley, Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496–510 (2016)

    Article  CAS  PubMed  Google Scholar 

  172. J. Wei, R.K. Mialki, S. Dong, A. Khoo, R.K. Mallampalli, Y. Zhao, J. Zhao, A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. Biochim. Biophys. Acta 1833, 2757–2764 (2013)

    Article  CAS  PubMed  Google Scholar 

  173. T.K. Oberoi, T. Dogan, J.C. Hocking, R.P. Scholz, J. Mooz, C.L. Anderson, C. Karreman, D. Meyer Zu Heringdorf, G. Schmidt, M. Ruonala, K. Namikawa, G.S. Harms, A. Carpy, B. Macek, R.W. Köster, K. Rajalingam, IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO J. 31, 14–28 (2012)

    Article  CAS  PubMed  Google Scholar 

  174. J. Zhao, R.K. Mialki, J. Wei, T.A. Coon, C. Zou, B.B. Chen, R.K. Mallampalli, Y. Zhao, SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J. 27, 2611–2619 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. A. Murali, J. Shin, H. Yurugi, A. Krishnan, M. Akutsu, A. Carpy, B. Macek, K. Rajalingam, Ubiquitin-dependent regulation of Cdc42 by XIAP. Cell Death Dis. 8, e2900 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. C. McFarlane, A.A. Kelvin, M. de la Vega, U. Govender, C.J. Scott, J.F. Burrows, J.A. Johnston, The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res. 70, 3329–3339 (2010)

    Article  CAS  PubMed  Google Scholar 

  177. M. de la Vega, A.A. Kelvin, D.J. Dunican, C. McFarlane, J.F. Burrows, J. Jaworski, N.J. Stevenson, K. Dib, J.Z. Rappoport, C.J. Scott, A. Long, J.A. Johnston, The deubiquitinating enzyme USP17 is essential for GTPase subcellular localization and cell motility. Nat. Commun. 2, 259 (2011)

    Article  PubMed  ADS  Google Scholar 

  178. R. Massoumi, CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol. 7, 285–297 (2011)

    Article  CAS  PubMed  Google Scholar 

  179. J. Guo, S. Shinriki, Y. Su, T. Nakamura, M. Hayashi, Y. Tsuda, Y. Murakami, M. Tasaki, T. Hide, T. Takezaki, J. Kuratsu, S. Yamashita, M. Ueda, J.D. Li, Y. Ando, H. Jono, Hypoxia suppresses cylindromatosis (CYLD) expression to promote inflammation in glioblastoma: possible link to acquired resistance to anti-VEGF therapy. Oncotarget 5, 6353–6364 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  180. E. Ghadami, N. Nikbakhsh, S. Fattahi, M. Kosari-Monfared, M. Ranaee, H. Taheri, F. Amjadi-Moheb, G. Godazandeh, S. Shafaei, A. Nosrati, M. Pilehchian Langroudi, A.A. Samadani, G. Amirbozorgi, V. Mirnia, H. Akhavan-Niaki, Epigenetic alterations of CYLD promoter modulate its expression in gastric adenocarcinoma: a footprint of infections. J. Cell Physiol. 234, 4115–4124 (2019)

    Article  CAS  PubMed  Google Scholar 

  181. J. Font-Burgada, E. Seki, M. Karin, CYLD and HCC: when being too sensitive to your dirty neighbors results in self-destruction. Cancer Cell 21, 711–712 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. T. Orfanidou, K. Xanthopoulos, D. Dafou, A. Pseftogas, P. Hadweh, C. Psyllaki, E. Hatzivassiliou, G. Mosialos, Down-regulation of the tumor suppressor CYLD enhances the transformed phenotype of human breast cancer cells. Anticancer Res. 37, 3493–3503 (2017)

    CAS  PubMed  Google Scholar 

  183. Z. Cui, H. Kang, J.R. Grandis, D.E. Johnson, CYLD alterations in the tumorigenesis and progression of human papillomavirus-associated head and neck cancers. Mol. Cancer Res. 19, 14–24 (2021)

    Article  CAS  PubMed  Google Scholar 

  184. Y. Ishikawa, K. Tsunoda, M. Shibazaki, K. Takahashi, T. Akasaka, T. Masuda, C. Maesawa, Downregulation of cylindromatosis gene, CYLD, confers a growth advantage on malignant melanoma cells while negatively regulating their migration activity. Int. J. Oncol. 41, 53–60 (2012)

    CAS  PubMed  Google Scholar 

  185. J. Majolée, F. Podieh, P.L. Hordijk, I. Kovačević, The interplay of Rac1 activity, ubiquitination and GDI binding and its consequences for endothelial cell spreading. PLoS ONE 16, e0254386 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  186. J. Gao, L. Sun, L. Huo, M. Liu, D. Li, J. Zhou, CYLD regulates angiogenesis by mediating vascular endothelial cell migration. Blood 115, 4130–4137 (2010)

    Article  CAS  PubMed  Google Scholar 

  187. Y. Yang, L. Sun, Tala, J. Gao, D. Li, J. Zhou, M. Liu, CYLD regulates RhoA activity by modulating LARG ubiquitination. PLoS ONE 8, e55833 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  188. N.Z. Ghanem, M.L. Matter, J.W. Ramos, Regulation of leukaemia associated Rho GEF (LARG/ARHGEF12. Small GTPases 1–9 (2021)

  189. D. Li, J. Gao, Y. Yang, L. Sun, S. Suo, Y. Luo, W. Shui, J. Zhou, M. Liu, CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 13, 974–983 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. J.L. Henty-Ridilla, A. Rankova, J.A. Eskin, K. Kenny, B.L. Goode, Accelerated actin filament polymerization from microtubule plus ends. Science 352, 1004–1009 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  191. B.J. Mathis, Y. Lai, C. Qu, J.S. Janicki, T. Cui, CYLD-mediated signaling and diseases. Curr. Drug Targets 16, 284–294 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. M. Saldana, K. VanderVorst, A.L. Berg, H. Lee, K.L. Carraway, Otubain 1: a non-canonical deubiquitinase with an emerging role in cancer. Endocr.-Relat. Cancer 26, R1–r14 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. P. Chen, H. Wang, W. Zhang, Y. Chen, Y. Lv, D. Wu, M. Guo, H. Deng, Loss of BAP1 results in growth inhibition and enhances mesenchymal-epithelial transition in kidney tumor cells. Mol. Cell. Proteomics 18, 1320–1329 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. L.C. Kim, L. Song, E.B. Haura, Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009)

    Article  PubMed  Google Scholar 

  195. K. Minoguchi, H. Kihara, H. Nishikata, M.M. Hamawy, R.P. Siraganian, Src family tyrosine kinase Lyn binds several proteins including paxillin in rat basophilic leukemia cells. Mol. Immunol. 31, 519–529 (1994)

    Article  CAS  PubMed  Google Scholar 

  196. D. Gianni, N. Taulet, C. DerMardirossian, G.M. Bokoch, c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol. Biol. Cell 21, 4287–4298 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. S.A. Courtneidge, E.F. Azucena, I. Pass, D.F. Seals, L. Tesfay, The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harb. Symp. Quant. Biol. 70, 167–171 (2005)

    Article  CAS  PubMed  Google Scholar 

  198. J.V. Evans, A.G. Ammer, J.E. Jett, C.A. Bolcato, J.C. Breaux, K.H. Martin, M.V. Culp, P.M. Gannett, S.A. Weed, Src binds cortactin through an SH2 domain cystine-mediated linkage. J. Cell Sci. 125, 6185–6197 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. N. Martinez-Quiles, H.Y. Ho, M.W. Kirschner, N. Ramesh, R.S. Geha, Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol. Cell Biol. 24, 5269–5280 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. S. Tehrani, N. Tomasevic, S. Weed, R. Sakowicz, J.A. Cooper, Src phosphorylation of cortactin enhances actin assembly. Proc. Natl. Acad. Sci. U. S. A. 104, 11933–11938 (2007)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. S. Huveneers, E.H. Danen, Adhesion signaling - crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009)

    Article  CAS  PubMed  Google Scholar 

  202. R. Roskoski Jr., Src kinase regulation by phosphorylation and dephosphorylation. Biochem. Biophys. Res. Commun. 331, 1–14 (2005)

    Article  CAS  PubMed  Google Scholar 

  203. M. Okada, Regulation of the SRC family kinases by Csk. Int. J. Biol. Sci. 8, 1385–1397 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Y.P. Chong, T.D. Mulhern, H.C. Cheng, C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)–endogenous negative regulators of Src-family protein kinases. Growth Factors 23, 233–244 (2005)

    Article  CAS  PubMed  Google Scholar 

  205. L. Moro, D. Simoneschi, E. Kurz, A.A. Arbini, S. Jang, N. Guaragnella, S. Giannattasio, W. Wang, Y.A. Chen, G. Pires, A. Dang, E. Hernandez, P. Kapur, A. Mishra, A. Tsirigos, G. Miller, J.T. Hsieh, M. Pagano, Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nat. Cell Biol. 22, 1130–1142 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. A.P. McCann, P. Smyth, F. Cogo, W.J. McDaid, L. Jiang, J. Lin, E. Evergren, R.E. Burden, S. Van Schaeybroeck, C.J. Scott, J.F. Burrows, USP17 is required for trafficking and oncogenic signaling of mutant EGFR in NSCLC cells. Cell Commun. Signal. 16, 77 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. R. Al-Mahdi, N. Babteen, K. Thillai, M. Holt, B. Johansen, H.L. Wetting, O.M. Seternes, C.M. Wells, A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adhes. Migr. 9, 483–494 (2015)

    Article  CAS  Google Scholar 

  208. S. Vallabhaneni, J. Liu, M. Morel, J. Wang, F.J. DeMayo, W. Long, Conditional ERK3 overexpression cooperates with PTEN deletion to promote lung adenocarcinoma formation in mice. Mol. Oncol. 16(5), 1184–1199 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  209. S. Mathien, P. Déléris, M. Soulez, L. Voisin, S. Meloche, Deubiquitinating enzyme USP20 regulates extracellular signal-regulated kinase 3 stability and biological activity. Mol. Cell Biol. 37, e00432-16 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. N. Stöhr, M. Köhn, M. Lederer, M. Glass, C. Reinke, R.H. Singer, S. Hüttelmaier, IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev. 26, 176–189 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  211. O.M. Seternes, T. Mikalsen, B. Johansen, E. Michaelsen, C.G. Armstrong, N.A. Morrice, B. Turgeon, S. Meloche, U. Moens, S.M. Keyse, Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J. 23, 4780–4791 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. L. Elkhadragy, H. Alsaran, W. Long, The C-terminus tail regulates ERK3 kinase activity and its ability in promoting cancer cell migration and invasion. Int. J. Mol. Sci. 21, 4044 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. R. El-Merahbi, J.T. Viera, A.L. Valdes, K. Kolczynska, S. Reuter, M.C. Löffler, M. Erk, C.P. Ade, T. Karwen, A.E. Mayer, M. Eilers, G. Sumara, The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes Dev. 34, 495–510 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. S. Schumacher, K. Laass, S. Kant, Y. Shi, A. Visel, A.D. Gruber, A. Kotlyarov, M. Gaestel, Scaffolding by ERK3 regulates MK5 in development. EMBO J. 23, 4770–4779 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. W. Li, M. Shen, Y.Z. Jiang, R. Zhang, H. Zheng, Y. Wei, Z.M. Shao, Y. Kang, Deubiquitinase USP20 promotes breast cancer metastasis by stabilizing SNAI2. Genes Dev. 34, 1310–1315 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. M. Zhu, H. Zhao, J. Liao, X. Xu, HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res. 42, 13074–13081 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. I. Shanmugam, M. Abbas, F. Ayoub, S. Mirabal, M. Bsaili, E.K. Caulder, D.M. Weinstock, A.E. Tomkinson, R. Hromas, M. Shaheen, Ubiquitin-specific peptidase 20 regulates Rad17 stability, checkpoint kinase 1 phosphorylation and DNA repair by homologous recombination. J. Biol. Chem. 289, 22739–22748 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. H. Badmos, N. Cobbe, A. Campbell, R. Jackson, D. Bennett, Drosophila USP22/nonstop polarizes the actin cytoskeleton during collective border cell migration. J. Cell Biol. 220, e202007005 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. T.J. Stanek, V.J. Gennaro, M.A. Tracewell, D. Di Marcantonio, K.L. Pauley, S. Butt, C. McNair, F. Wang, A.V. Kossenkov, K.E. Knudsen, T. Butt, S.M. Sykes, S.B. McMahon, The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J. 40, e102509 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Y. Xie, M. Avello, M. Schirle, E. McWhinnie, Y. Feng, E. Bric-Furlong, C. Wilson, R. Nathans, J. Zhang, M.W. Kirschner, S.M. Huang, F. Cong, Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J. Biol. Chem. 288, 2976–2985 (2013)

    Article  CAS  PubMed  Google Scholar 

  221. J.M. Lamar, P. Stern, H. Liu, J.W. Schindler, Z.G. Jiang, R.O. Hynes, The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc. Natl. Acad. Sci. U. S. A. 109, E2441–E2450 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  222. H.J. Lee, M.F. Diaz, K.M. Price, J.A. Ozuna, S. Zhang, E.M. Sevick-Muraca, J.P. Hagan, P.L. Wenzel, Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. 8, 14122 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  223. Y. Qiao, J. Chen, Y.B. Lim, M.L. Finch-Edmondson, V.P. Seshachalam, L. Qin, T. Jiang, B.C. Low, H. Singh, C.T. Lim, M. Sudol, YAP regulates actin dynamics through ARHGAP29 and promotes metastasis. Cell Rep. 19, 1495–1502 (2017)

    Article  CAS  PubMed  Google Scholar 

  224. A. Prasad, V. Paruchuri, A. Preet, F. Latif, R.K. Ganju, Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J. Biol. Chem. 283, 26624–26633 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. T.S. Chiang, M.C. Lin, M.C. Tsai, C.H. Chen, L.T. Jang, F.S. Lee, ADP-ribosylation factor-like 4A interacts with Robo1 to promote cell migration by regulating Cdc42 activation. Mol. Biol. Cell 30, 69–81 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Y. Wang, H.L. Teng, Z.H. Huang, Repulsive migration of Schwann cells induced by Slit-2 through Ca2+-dependent RhoA-myosin signaling. Glia 61, 710–723 (2013)

    Article  PubMed  Google Scholar 

  227. A.R. Anand, H. Zhao, T. Nagaraja, L.A. Robinson, R.K. Ganju, N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology 10, 2 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. A. Prasad, P.M. Kuzontkoski, A. Shrivastava, W. Zhu, D.Y. Li, J.E. Groopman, Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp. PLoS ONE 7, e48854 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  229. H. Sheldon, M. Andre, J.A. Legg, P. Heal, J.M. Herbert, R. Sainson, A.S. Sharma, J.K. Kitajewski, V.L. Heath, R. Bicknell, Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J. 23, 513–522 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. J. Yuasa-Kawada, M. Kinoshita-Kawada, Y. Rao, J.Y. Wu, Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc. Natl. Acad. Sci. U. S. A. 106, 14530–14535 (2009)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  231. T. Mgrditchian, G. Sakalauskaite, T. Müller, C. Hoffmann, C. Thomas, The multiple roles of actin-binding proteins at invadopodia. Int. Rev. Cell Mol. Biol. 360, 99–132 (2021)

    Article  CAS  PubMed  Google Scholar 

  232. W. Wang, R. Eddy, J. Condeelis, The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer 7, 429–440 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. G.L. Zhou, H. Zhang, H. Wu, P. Ghai, J. Field, Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin. J. Cell Sci. 127, 5052–5065 (2014)

    PubMed  PubMed Central  Google Scholar 

  234. K. Moriyama, K. Iida, I. Yahara, Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73–86 (1996)

    Article  CAS  PubMed  Google Scholar 

  235. J.M. Cameron, M. Gabrielsen, Y.H. Chim, J. Munro, E.J. McGhee, D. Sumpton, P. Eaton, K.I. Anderson, H. Yin, M.F. Olson, Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation. Curr. Biol. 25, 1520–1525 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. F. Larbret, P. Biber, N. Dubois, S. Ivanov, L. Lafanechere, S. Tartare-Deckert, M. Deckert, Deubiquitinase inhibitors impair leukemic cell migration through cofilin oxidation and alteration of actin reorganization. Front. Pharmacol. 12, 778216 (2021)

    Article  CAS  PubMed  Google Scholar 

  237. M. Schnoor, T.E. Stradal, K. Rottner, Cortactin: cell functions of A multifaceted actin-binding protein. Trends Cell Biol. 28, 79–98 (2018)

    Article  CAS  PubMed  Google Scholar 

  238. T. Uruno, J. Liu, P. Zhang, Y. Fan, C. Egile, R. Li, S.C. Mueller, X. Zhan, Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat. Cell Biol. 3, 259–266 (2001)

    Article  CAS  PubMed  Google Scholar 

  239. J.J. Tyler, E.G. Allwood, K.R. Ayscough, WASP family proteins, more than Arp2/3 activators. Biochem. Soc. Trans. 44, 1339–1345 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. J.R. Kowalski, C. Egile, S. Gil, S.B. Snapper, R. Li, S.M. Thomas, Cortactin regulates cell migration through activation of N-WASP. J. Cell Sci. 118, 79–87 (2005)

    Article  CAS  PubMed  Google Scholar 

  241. L.A. Helgeson, B.J. Nolen, Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. eLife 2, e00884 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  242. M. Oser, H. Yamaguchi, C.C. Mader, J.J. Bravo-Cordero, M. Arias, X. Chen, V. Desmarais, J. van Rheenen, A.J. Koleske, J. Condeelis, Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J. Cell Biol. 186, 571–587 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. L.C. Kelley, S.A. Weed, Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS ONE 7, e44363 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  244. J.Y. Kim, H.G. Hwang, J.Y. Lee, M. Kim, J.Y. Kim, Cortactin deacetylation by HDAC6 and SIRT2 regulates neuronal migration and dendrite morphogenesis during cerebral cortex development. Mol. Brain 13, 105 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. X. Zhang, Z. Yuan, Y. Zhang, S. Yong, A. Salas-Burgos, J. Koomen, N. Olashaw, J.T. Parsons, X.J. Yang, S.R. Dent, T.P. Yao, W.S. Lane, E. Seto, HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. J. Zhao, J. Wei, R. Mialki, C. Zou, R.K. Mallampalli, Y. Zhao, Extracellular signal-regulated kinase (ERK) regulates cortactin ubiquitination and degradation in lung epithelial cells. J. Biol. Chem. 287, 19105–19114 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. W.D. Wu, M. Wang, H.H. Ding, Z.J. Qiu, FBXL5 attenuates RhoGDI2-induced cisplatin resistance in gastric cancer cells. Eur. Rev. Med. Pharmacol. Sci. 20, 2551–2557 (2016)

    PubMed  Google Scholar 

  248. Y. Zhao, Y. Lei, S.W. He, Y.Q. Li, Y.Q. Wang, X.H. Hong, Y.L. Liang, J.Y. Li, Y. Chen, W.J. Luo, P.P. Zhang, X.J. Yang, Q.M. He, J. Ma, N. Liu, L.L. Tang, Hypermethylation of UCHL1 promotes metastasis of nasopharyngeal carcinoma by suppressing degradation of cortactin (CTTN). Cells 9(3), 559 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. S.H. Lee, R. Dominguez, Regulation of actin cytoskeleton dynamics in cells. Mol. Cells 29, 311–325 (2010)

    Article  CAS  PubMed  Google Scholar 

  250. M.H. Lee, J.K. Kundu, J.I. Chae, J.H. Shim, Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch. Pharm. Res. 42, 481–491 (2019)

    Article  CAS  PubMed  Google Scholar 

  251. L.L. Lohmer, L.C. Kelley, E.J. Hagedorn, D.R. Sherwood, Invadopodia and basement membrane invasion in vivo. Cell Adhes. Migr. 8, 246–255 (2014)

    Article  Google Scholar 

  252. R.J. Eddy, M.D. Weidmann, V.P. Sharma, J.S. Condeelis, Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 27, 595–607 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. T. Ideker, V. Thorsson, J.A. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner, D.R. Goodlett, R. Aebersold, L. Hood, Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  254. K.P. Lai, J. Chen, W.K.F. Tse, Role of deubiquitinases in human cancers: potential targeted therapy. Int. J. Mol. Sci. 21(7), 2548 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. US National Library of Medicine (2021), ClinicalTrials.gov. https://www.clinicaltrials.gov/study/NCT05240898

  256. S.M. Nijman, T.T. Huang, A.M. Dirac, T.R. Brummelkamp, R.M. Kerkhoven, A.D. D’Andrea, R. Bernards, The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005)

    Article  CAS  PubMed  Google Scholar 

  257. A. Simoneau, J.L. Engel, M. Bandi, K. Lazarides, S. Liu, S.R. Meier, A.H. Choi, H. Zhang, B. Shen, L. Martires, D. Gotur, T.V. Pham, F. Li, L. Gu, S. Gong, M. Zhang, E. Wilker, X. Pan, D.A. Whittington, S. Throner, J.P. Maxwell, Y. Chen, Y. Yu, A. Huang, J.N. Andersen, T. Feng, Ubiquitinated PCNA drives USP1 synthetic lethality in cancer. Mol. Cancer Ther. 22, 215–226 (2023)

    Article  CAS  PubMed  Google Scholar 

  258. A.P. Turnbull, S. Ioannidis, W.W. Krajewski, A. Pinto-Fernandez, C. Heride, A.C.L. Martin, L.M. Tonkin, E.C. Townsend, S.M. Buker, D.R. Lancia, J.A. Caravella, A.V. Toms, T.M. Charlton, J. Lahdenranta, E. Wilker, B.C. Follows, N.J. Evans, L. Stead, C. Alli, V.V. Zarayskiy, A.C. Talbot, A.J. Buckmelter, M. Wang, C.L. McKinnon, F. Saab, J.F. McGouran, H. Century, M. Gersch, M.S. Pittman, C.G. Marshall, T.M. Raynham, M. Simcox, L.M.D. Stewart, S.B. McLoughlin, J.A. Escobedo, K.W. Bair, C.J. Dinsmore, T.R. Hammonds, S. Kim, S. Urbé, M.J. Clague, B.M. Kessler, D. Komander, Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481–486 (2017)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  259. S.M. Lange, L.A. Armstrong, Y. Kulathu, Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol. Cell 82, 15–29 (2022)

    Article  CAS  PubMed  Google Scholar 

  260. N.J. Henning, L. Boike, J.N. Spradlin, C.C. Ward, G. Liu, E. Zhang, B.P. Belcher, S.M. Brittain, M.J. Hesse, D. Dovala, L.M. McGregor, R. Valdez Misiolek, L.W. Plasschaert, D.J. Rowlands, F. Wang, A.O. Frank, D. Fuller, A.R. Estes, K.L. Randal, A. Panidapu, J.M. McKenna, J.A. Tallarico, M. Schirle, D.K. Nomura, Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat. Chem. Biol. 18, 412–421 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. J. Paulk, Lysosome-targeting chimeras evolve. Nat. Chem. Biol. 17, 931–933 (2021)

    Article  CAS  PubMed  Google Scholar 

  262. N. Poondla, A.P. Chandrasekaran, K.S. Kim, S. Ramakrishna, Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep. 52, 181–189 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. D. Ren, Y. Sun, D. Li, H. Wu, X. Jin, USP22-mediated deubiquitination of PTEN inhibits pancreatic cancer progression by inducing p21 expression. Mol. Oncol. 16, 1200–1217 (2022)

    Article  CAS  PubMed  Google Scholar 

  264. F. Pareja, D.A. Ferraro, C. Rubin, H. Cohen-Dvashi, F. Zhang, S. Aulmann, N. Ben-Chetrit, G. Pines, R. Navon, N. Crosetto, W. Köstler, S. Carvalho, S. Lavi, F. Schmitt, I. Dikic, Z. Yakhini, P. Sinn, G.B. Mills, Y. Yarden, Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31, 4599–4608 (2012)

    Article  CAS  PubMed  Google Scholar 

  265. H.N. Du, Transcription, DNA damage and beyond: the roles of histone ubiquitination and deubiquitination. Curr. Protein Pept. Sci. 13, 447–466 (2012)

    Article  CAS  PubMed  Google Scholar 

  266. T. Sun, Z. Liu, Q. Yang, The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer 19, 146 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  267. D. Mennerich, K. Kubaichuk, T. Kietzmann, DUBs, hypoxia, and cancer. Trends Cancer 5, 632–653 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This review was supported by Key Research and Development Plan of Shandong Province (2022CXGC020501), Taishan Scholar Foundation of Shandong Province (tsqnz20230632) and National Natural Science Foundation of China (8230101506).

Author information

Authors and Affiliations

Authors

Contributions

Y.X writed the review article. W.S edited the review. C.X constructed the figure. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ying Xue or Wei Song.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent on publication of this review article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Xue, C. & Song, W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol. (2024). https://doi.org/10.1007/s13402-024-00923-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-024-00923-z

Keywords

Navigation