Skip to main content

Advertisement

Log in

Atp8a1 deletion increases the proliferative activity of hematopoietic stem cells by impairing PTEN function

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The eukaryotic cell plasma membrane contains several asymmetrically distributed phospholipids, which is maintained by the P4-ATPase flippase complex. Herein, we demonstrated the biological effects and mechanisms of asymmetrical loss in hematopoietic stem cells (HSCs).

Methods

An Atp8a1 knockout mouse model was employed, from which the HSC (long-term HSCs and short-term HSCs) population was analyzed to assess their abundance and function. Additionally, competitive bone marrow transplantation and 5-FU stress assays were performed. RNA sequencing was performed on Hematopoietic Stem and Progenitor Cells, and DNA damage was assayed using immunofluorescence staining and comet electrophoresis. The protein abundance for members of key signaling pathways was confirmed using western blotting.

Results

Atp8a1 deletion resulted in slight hyperleukocytosis, associated with the high proliferation of HSCs and BCR/ABL1 transformed leukemia stem cells (LSCs). Atp8a1 deletion increased the repopulation capability of HSCs with a competitive advantage in reconstitution assay. HSCs without Atp8a1 were more sensitive to 5-FU-induced apoptosis. Moreover, Atp8a1 deletion prevented HSC DNA damage and facilitated DNA repair processes. Genes involved in PI3K-AKT-mTORC1, DNA repair, and AP-1 complex signaling were enriched and elevated in HSCs with Atp8a1 deletion. Furthermore, Atp8a1 deletion caused decreased PTEN protein levels, resulting in the activation of PI3K-AKT-mTORC1 signaling, further increasing the activity of JNK/AP-1 signaling and YAP1 phosphorylation.

Conclusion

We identified the role of Atp8a1 on hematopoiesis and HSCs. Atp8a1 deletion resulted in the loss of phosphatidylserine asymmetry and intracellular signal transduction chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request. In addition, the raw sequence data reported in this paper have been deposited in the Genome Sequence Archive[28] in National Genomics Data Center[29], China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA009276), which is publicly accessible at https://ngdc.cncb.ac.cn/gsa.

This paper has not been previously published and is not under consideration by another journal. All authors have approved and agreed to submit the manuscript to this journal.

References

  1. G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. (2008). https://doi.org/10.1038/nrm2330

    Article  PubMed  PubMed Central  Google Scholar 

  2. V.V. Flis, G. Daum, Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect. Biol. (2013). https://doi.org/10.1101/cshperspect.a013235

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Takar, Y. Wu, T.R. Graham, The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane. J. Biol. Chem. (2016). https://doi.org/10.1074/jbc.M115.686253

    Article  PubMed  PubMed Central  Google Scholar 

  4. N.F. Lipp, S. Ikhlef, J. Milanini, G. Drin, Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front. Cell Dev. Biol. (2020). https://doi.org/10.3389/fcell.2020.00663

    Article  PubMed  PubMed Central  Google Scholar 

  5. T.G. Pomorski, A.K. Menon, Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Prog. Lipid Res. (2016). https://doi.org/10.1016/j.plipres.2016.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. D. Marquardt, B. Geier, G. Pabst, Asymmetric lipid membranes: towards more realistic model systems. Membranes (2015). https://doi.org/10.3390/membranes5020180

    Article  PubMed  PubMed Central  Google Scholar 

  7. H.M. Hankins, R.D. Baldridge, P. Xu, T.R. Graham, Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic (2015). https://doi.org/10.1111/tra.12233

    Article  PubMed  Google Scholar 

  8. D.T. Moore, B.W. Berger, W.F. DeGrado, Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure (2008). https://doi.org/10.1016/j.str.2008.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  9. R.L. Lopez-Marques, L. Theorin, M.G. Palmgren, T.G. Pomorski, P4-ATPases: lipid flippases in cell membranes. Pflugers Arch. (2014). https://doi.org/10.1007/s00424-013-1363-4

    Article  PubMed  Google Scholar 

  10. L.N. Bull, M.J. van Eijk, L. Pawlikowska, J.A. DeYoung, J.A. Juijn, M. Liao, L.W. Klomp, N. Lomri, R. Berger, B.F. Scharschmidt, A.S. Knisely, R.H. Houwen, N.B. Freimer, A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. (1998). https://doi.org/10.1038/ng0398-219

    Article  PubMed  Google Scholar 

  11. M. Yabas, C.E. Teh, S. Frankenreiter, D. Lal, C.M. Roots, B. Whittle, D.T. Andrews, Y. Zhang, N.C. Teoh, J. Sprent, L.E. Tze, E.M. Kucharska, J. Kofler, G.C. Farell, S. Broer, C.C. Goodnow, A. Enders, ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat Immunol (2011). https://doi.org/10.1038/ni.2011

    Article  PubMed  PubMed Central  Google Scholar 

  12. A.Y. Liou, L.L. Molday, J. Wang, J.P. Andersen, R.S. Molday, Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. J. Biol. Chem. (2019). https://doi.org/10.1074/jbc.RA118.007270

    Article  PubMed  PubMed Central  Google Scholar 

  13. X. Zhu, R.T. Libby, W.N. de Vries, R.S. Smith, D.L. Wright, R.T. Bronson, K.L. Seburn, S.W. John, Mutations in a P-type ATPase gene cause axonal degeneration. PLoS Genet. (2012). https://doi.org/10.1371/journal.pgen.1002853

    Article  PubMed  PubMed Central  Google Scholar 

  14. D.J. Kerr, A. Marsillo, S.R. Guariglia, T. Budylin, R. Sadek, S. Menkes, A. Chauhan, G.Y. Wen, D.P. McCloskey, A. Wieraszko, P. Banerjee, Aberrant hippocampal Atp8a1 levels are associated with altered synaptic strength, electrical activity, and autistic-like behavior. Biochem. Biophys. Acta. (2016). https://doi.org/10.1016/j.bbadis.2016.06.005

    Article  PubMed  Google Scholar 

  15. U. Kato, H. Inadome, M. Yamamoto, K. Emoto, T. Kobayashi, M. Umeda, Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration. J. Biol. Chem. (2013). https://doi.org/10.1074/jbc.M112.402701

    Article  PubMed  PubMed Central  Google Scholar 

  16. H.W. Shin, H. Takatsu, Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J. (2019). https://doi.org/10.1096/fj.201801873R

    Article  PubMed  PubMed Central  Google Scholar 

  17. B.X. Huang, M. Akbar, K. Kevala, H.Y. Kim, Phosphatidylserine is a critical modulator for Akt activation. J. Cell Biol. (2011). https://doi.org/10.1083/jcb.201005100

    Article  PubMed  PubMed Central  Google Scholar 

  18. H.Y. Kim, M. Akbar, A. Lau and L. Edsall, Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. (2000). https://doi.org/10.1074/jbc.M004446200.

  19. A.C. Newton, L.M. Keranen, Phosphatidyl-L-serine is necessary for protein kinase C’s high-affinity interaction with diacylglycerol-containing membranes. Biochemistry (1994). https://doi.org/10.1021/bi00187a035

    Article  PubMed  Google Scholar 

  20. K. Levano, V. Punia, M. Raghunath, P.R. Debata, G.M. Curcio, A. Mogha, S. Purkayastha, D. McCloskey, J. Fata, P. Banerjee, Atp8a1 deficiency is associated with phosphatidylserine externalization in hippocampus and delayed hippocampus-dependent learning. J. Neurochem. (2012). https://doi.org/10.1111/j.1471-4159.2011.07543.x

    Article  PubMed  Google Scholar 

  21. I. Dransfield, A. Zagorska, E.D. Lew, K. Michail, G. Lemke, Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells. Cell Death Dis. (2015). https://doi.org/10.1038/cddis.2015.18

    Article  PubMed  PubMed Central  Google Scholar 

  22. R.F. Zwaal, P. Comfurius, E.M. Bevers, Lipid-protein interactions in blood coagulation. Biochem. Biophys. Acta. (1998). https://doi.org/10.1016/s0304-4157(98)00018-5

    Article  PubMed  Google Scholar 

  23. P.A. Leventis, S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys (2010). https://doi.org/10.1146/annurev.biophys.093008.131234

    Article  PubMed  Google Scholar 

  24. S. Shenoy, P. Shekhar, F. Heinrich, M.C. Daou, A. Gericke, A.H. Ross, M. Losche, Membrane association of the PTEN tumor suppressor: molecular details of the protein-membrane complex from SPR binding studies and neutron reflection. PLoS One (2012). https://doi.org/10.1371/journal.pone.0032591

    Article  PubMed  PubMed Central  Google Scholar 

  25. B.D. Manning, A. Toker, AKT/PKB Signaling: Navigating the Network. Cell (2017). https://doi.org/10.1016/j.cell.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. F. Wu, Z. Chen, J. Liu, Y. Hou, The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. (2021). https://doi.org/10.1016/j.exphem.2021.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. (2005). https://doi.org/10.1073/pnas.0506580102

    Article  PubMed  PubMed Central  Google Scholar 

  28. T. Chen, X. Chen, S. Zhang, J. Zhu, B. Tang, A. Wang, L. Dong, Z. Zhang, C. Yu and Y. Sun, The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinformatics (2021). https://doi.org/10.1016/j.gpb.2021.08.001

  29. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. (2022)

  30. J. Li, D.M. Witten, I.M. Johnstone, R. Tibshirani, Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics (2012). https://doi.org/10.1093/biostatistics/kxr031

    Article  PubMed  PubMed Central  Google Scholar 

  31. Y. Hu, S. Li, Survival regulation of leukemia stem cells. Cell. Mol. Life Sci. (2016). https://doi.org/10.1007/s00018-015-2108-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. C. Ramkumar, R.M. Gerstein, H. Zhang, Serial transplantation of bone marrow to test self-renewal capacity of hematopoietic stem cells in vivo. Methods Mol. Biol. (2013). https://doi.org/10.1007/978-1-62703-317-6_2

    Article  PubMed  Google Scholar 

  33. D.J. Papachristou, A. Batistatou, G.P. Sykiotis, I. Varakis, A.G. Papavassiliou, Activation of the JNK-AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone (2003). https://doi.org/10.1016/s8756-3282(03)00026-7

    Article  PubMed  Google Scholar 

  34. T. Takeda, Y. Yamamoto, M. Tsubaki, T. Matsuda, A. Kimura, N. Shimo, S. Nishida, PI3K/Akt/YAP signaling promotes migration and invasion of DLD-1 colorectal cancer cells. Oncol. Lett. (2022). https://doi.org/10.3892/ol.2022.13226

    Article  PubMed  PubMed Central  Google Scholar 

  35. M.J. Althoff, R.C. Nayak, S. Hegde, A.M. Wellendorf, B. Bohan, M.D. Filippi, M. Xin, Q.R. Lu, H. Geiger, Y. Zheng, M.T. Diaz-Meco, J. Moscat, J.A. Cancelas, Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood (2020). https://doi.org/10.1182/blood.2019004113

    Article  PubMed  PubMed Central  Google Scholar 

  36. J.P. Andersen, A.L. Vestergaard, S.A. Mikkelsen, L.S. Mogensen, M. Chalat, R.S. Molday, P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front. Physiol. (2016). https://doi.org/10.3389/fphys.2016.00275

    Article  PubMed  PubMed Central  Google Scholar 

  37. N. Li, Y. Yang, C. Liang, Q. Qiu, C. Pan, M. Li, S. Yang, L. Chen, X. Zhu, Y. Hu, Tmem30a Plays Critical Roles in Ensuring the Survival of Hematopoietic Cells and Leukemia Cells in Mice. Am. J. Pathol. (2018). https://doi.org/10.1016/j.ajpath.2018.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  38. M.P. Murphy, How mitochondria produce reactive oxygen species. Biochem. J. (2009). https://doi.org/10.1042/BJ20081386

    Article  PubMed  Google Scholar 

  39. S. Chatterjee, E.A. Browning, N. Hong, K. DeBolt, E.M. Sorokina, W. Liu, M.J. Birnbaum and A.B. Fisher, Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. Am. J Physiol. Heart Circ Physiol (2012). https://doi.org/10.1152/ajpheart.00298.2011

  40. Y. Shi, F. Nikulenkov, J. Zawacka-Pankau, H. Li, R. Gabdoulline, J. Xu, S. Eriksson, E. Hedstrom, N. Issaeva, A. Kel, E.S. Arner, G. Selivanova, ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. (2014). https://doi.org/10.1038/cdd.2013.186

    Article  PubMed  PubMed Central  Google Scholar 

  41. E.H. Blackburn, C.W. Greider, J.W. Szostak, Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. (2006). https://doi.org/10.1038/nm1006-1133

    Article  PubMed  Google Scholar 

  42. T. Matsudaira, K. Mukai, T. Noguchi, J. Hasegawa, T. Hatta, S.I. Iemura, T. Natsume, N. Miyamura, H. Nishina, J. Nakayama, K. Semba, T. Tomita, S. Murata, H. Arai, T. Taguchi, Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells. Nat Commun. (2017). https://doi.org/10.1038/s41467-017-01255-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. T. Konishi, R.M. Schuster and A.B. Lentsch, Proliferation of hepatic stellate cells, mediated by YAP and TAZ, contributes to liver repair and regeneration after liver ischemia-reperfusion injury. American journal of physiology. Gastrointest. Liver Physiol. (2018). https://doi.org/10.1152/ajpgi.00153.2017

  44. C. Dai, X. Chen, J. Li, P. Comish, R. Kang, D. Tang, Transcription factors in ferroptotic cell death. Cancer Gene Ther. (2020). https://doi.org/10.1038/s41417-020-0170-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. J. Rosenbluh, D. Nijhawan, A.G. Cox, X. Li, J.T. Neal, E.J. Schafer, T.I. Zack, X. Wang, A. Tsherniak, A.C. Schinzel, D.D. Shao, S.E. Schumacher, B.A. Weir, F. Vazquez, G.S. Cowley, D.E. Root, J.P. Mesirov, R. Beroukhim, C.J. Kuo, W. Goessling, W.C. Hahn, beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell (2012). https://doi.org/10.1016/j.cell.2012.11.026

    Article  PubMed  PubMed Central  Google Scholar 

  46. O.P. Pinto do, K. Richter and L. Carlsson, Hematopoietic progenitor/stem cells immortalized by Lhx2 generate functional hematopoietic cells in vivo. Blood (2002). https://doi.org/10.1182/blood.v99.11.3939

  47. K. Richter, V. Wirta, L. Dahl, S. Bruce, J. Lundeberg, L. Carlsson, C. Williams, Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression. BMC Genomics (2006). https://doi.org/10.1186/1471-2164-7-75

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy for their support, the staff of the core facility and the animal facility of the State Key Laboratory of Biotherapy and West China Hospital.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82170114 to Y. Hu) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (Z20201008 to Y. Hu), Guizhou Provincial Science & Technology Support Program (NO [2020]4Y061 to Y. Hu). National Natural Science Foundation of China (81802468 to LZh). Chengdu Science and Technology innovation project (2021-YF05-00800-SN to LZh).

Author information

Authors and Affiliations

Authors

Contributions

L.Z, C.P and Y.H conceived research ideas, designed experiments, analyzed data, and wrote the manuscript. L.Z., W.T. and C.L. performed experiments; Y.F and B.W performed the bioinformatics; H. Q, Q.Q, N.L; W.H. Y.S and Z. Y helped complete the experiments. L.Z, X.Z and K.S reviewed and edited the manuscript, discussed the results and commented on the manuscript. All authors have read and approved the article.

Corresponding authors

Correspondence to Lingyun Zhou, Xianjun Zhu or Yiguo Hu.

Ethics declarations

Ethical approval

All mouse studies were approved by the Institutional Animal Care and Use Committee (IACUC) at the Sichuan University. All animals were monitored for abnormal behavior to minimize pain and suffering. Animals were euthanized when excessive deterioration of health was noted.

Competing interests

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 404 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Pan, C., Tian, W. et al. Atp8a1 deletion increases the proliferative activity of hematopoietic stem cells by impairing PTEN function. Cell Oncol. 46, 1069–1083 (2023). https://doi.org/10.1007/s13402-023-00797-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00797-7

Keywords

Navigation