Skip to main content

Advertisement

Log in

Role of nerves in neurofibromatosis type 1-related nervous system tumors

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors.

Conclusion

In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.J. Cimino, D.H. Gutmann, Neurofibromatosis type 1, Handbook of clinical neurology 148, 799–811 (2018) https://doi.org/10.1016/b978-0-444-64076-5.00051-x

  2. J.M. Friedman, Epidemiology of neurofibromatosis type 1. Am. J. Med. Genet. 89, 1–6 (1999)

    Article  CAS  Google Scholar 

  3. E. Rad, A.R. Tee, Neurofibromatosis type 1: Fundamental insights into cell signalling and cancer. Semin. Cell Dev. Biol. 52, 39–46 (2016). https://doi.org/10.1016/j.semcdb.2016.02.007

    Article  CAS  Google Scholar 

  4. G.A. Mashour, P.H. Driever, M. Hartmann, S.N. Drissel, T. Zhang, B. Scharf, U. Felderhoff-Müser, S. Sakuma, R.E. Friedrich, R.L. Martuza, V.F. Mautner, A. Kurtz, Circulating growth factor levels are associated with tumorigenesis in neurofibromatosis type 1. Clin. cancer research: official J. Am. Association Cancer Res. 10, 5677–5683 (2004). https://doi.org/10.1158/1078-0432.Ccr-03-0769

    Article  CAS  Google Scholar 

  5. D.H. Gutmann, R.E. Ferner, R.H. Listernick, B.R. Korf, P.L. Wolters, K.J. Johnson, Neurofibromatosis type 1. Nat. Rev. Dis. Primers 3, 17004 (2017). https://doi.org/10.1038/nrdp.2017.4

    Article  Google Scholar 

  6. T. Tucker, P. Wolkenstein, J. Revuz, J. Zeller, J.M. Friedman, Association between benign and malignant peripheral nerve sheath tumors in NF1, Neurology 65, 205–211 (2005) https://doi.org/10.1212/01.wnl.0000168830.79997.13

  7. B.N. Somatilaka, A. Sadek, R.M. McKay, L.Q. Le, Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 41, 2405–2421 (2022). https://doi.org/10.1038/s41388-022-02290-1

    Article  CAS  Google Scholar 

  8. O.O. Seminog, M.J. Goldacre, Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br. J. Cancer 108, 193–198 (2013). https://doi.org/10.1038/bjc.2012.535

    Article  CAS  Google Scholar 

  9. G. Blanchard, M.P. Lafforgue, L. Lion-François, I. Kemlin, D. Rodriguez, P. Castelnau, M. Carneiro, P. Meyer, F. Rivier, S. Barbarot, Y. Chaix, Systematic MRI in NF1 children under six years of age for the diagnosis of optic pathway gliomas. Study and outcome of a French cohort. Eur. J. Pediatr. neurology: EJPN : official J. Eur. Pediatr. Neurol. Soc. 20, 275–281 (2016). https://doi.org/10.1016/j.ejpn.2015.12.002

    Article  Google Scholar 

  10. C.J. Campen, D.H. Gutmann, Optic Pathway Gliomas in Neurofibromatosis Type 1. J. Child. Neurol. 33, 73–81 (2018). https://doi.org/10.1177/0883073817739509

    Article  Google Scholar 

  11. F. D’Angelo, M. Ceccarelli, L. Tala, J. Garofano, V. Zhang, F.P. Frattini, G. Caruso, K.D. Lewis, L. Alfaro, G. Bauchet, D. Berzero, M. Cachia, L. Cangiano, J. Capelle, F. de Groot, F. DiMeco, W. Ducray, G. Farah, S. Finocchiaro, C. Goutagny, C. Kamiya-Matsuoka, H. Lavarino, V. Loiseau, C.E. Lorgis, I. Marras, D.H. McCutcheon, S. Nam, V. Ronchi, R. Saletti, J. Seizeur, M. Slopis, F. Suñol, P. Vandenbos, D. Varlet, C. Vidaud, V. Watts, D.E. Tabar, S.K. Reuss, D. Kim, K. Meyronet, H. Mokhtari, K.P. Salvador, M. Bhat, M. Eoli, A. Sanson, Lasorella, A. Iavarone, The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat. Med. 25, 176–187 (2019). https://doi.org/10.1038/s41591-018-0263-8

    Article  CAS  Google Scholar 

  12. A.H. Zahalka, P.S. Frenette, Nerves in cancer, Nat. Rev. Cancer 20, 143–157 (2020). https://doi.org/10.1038/s41568-019-0237-2

    Article  CAS  Google Scholar 

  13. S. Deborde, T. Omelchenko, A. Lyubchik, Y. Zhou, S. He, W.F. McNamara, N. Chernichenko, S.Y. Lee, F. Barajas, C.H. Chen, R.L. Bakst, E. Vakiani, S. He, A. Hall, R.J. Wong, Schwann cells induce cancer cell dispersion and invasion. J. Clin. Investig. 126, 1538–1554 (2016). https://doi.org/10.1172/jci82658

    Article  Google Scholar 

  14. C. Hutchings, J.A. Phillips, M.B.A. Djamgoz, Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim. Biophys. Acta Rev. Cancer 1874, 188411 (2020). https://doi.org/10.1016/j.bbcan.2020.188411

    Article  CAS  Google Scholar 

  15. H.D. Reavis, H.I. Chen, R. Drapkin, Tumor Innervation: Cancer Has Some Nerve. Trends Cancer 6, 1059–1067 (2020). https://doi.org/10.1016/j.trecan.2020.07.005

    Article  CAS  Google Scholar 

  16. C. Magnon, S.J. Hall, J. Lin, X. Xue, L. Gerber, S.J. Freedland, P.S. Frenette, Autonomic nerve development contributes to prostate cancer progression. Sci. (New York N Y ) 341, 1236361 (2013). https://doi.org/10.1126/science.1236361

    Article  Google Scholar 

  17. H.C. Ko, V. Gupta, W.F. Mourad, K.S. Hu, L.B. Harrison, P.M. Som, R.L. Bakst, A contouring guide for head and neck cancers with perineural invasion. Pract. Radiat. Oncol. 4, e247–e258 (2014). https://doi.org/10.1016/j.prro.2014.02.001

    Article  Google Scholar 

  18. G. Rademakers, N. Vaes, S. Schonkeren, A. Koch, K.A. Sharkey, V. Melotte, The role of enteric neurons in the development and progression of colorectal cancer, Biochim. Biophys. Acta Rev. Cancer 1868, 420–434 (2017). https://doi.org/10.1016/j.bbcan.2017.08.003

    Article  CAS  Google Scholar 

  19. S. Faulkner, P. Jobling, B. March, C.C. Jiang, H. Hondermarck, Tumor Neurobiology and the War of Nerves in Cancer. Cancer Discov. 9, 702–710 (2019). https://doi.org/10.1158/2159-8290.Cd-18-1398

    Article  CAS  Google Scholar 

  20. C. Jiang, R.M. McKay, L.Q. Le, Tumorigenesis in neurofibromatosis type 1: role of the microenvironment. Oncogene 40, 5781–5787 (2021). https://doi.org/10.1038/s41388-021-01979-z

    Article  CAS  Google Scholar 

  21. N.H. Boyd, A.N. Tran, J.D. Bernstock, T. Etminan, A.B. Jones, G.Y. Gillespie, G.K. Friedman, A.B. Hjelmeland, Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 11, 665–683 (2021). https://doi.org/10.7150/thno.41692

    Article  CAS  Google Scholar 

  22. Y.P. Hsueh, Neurofibromin signaling and synapses. J. Biomed. Sci. 14, 461–466 (2007). https://doi.org/10.1007/s11373-007-9158-2

    Article  CAS  Google Scholar 

  23. A.B. Trovó-Marqui, E.H. Tajara, Neurofibromin: a general outlook. Clin. Genet. 70, 1–13 (2006). https://doi.org/10.1111/j.1399-0004.2006.00639.x

    Article  Google Scholar 

  24. J.A. Brown, K.A. Diggs-Andrews, S.M. Gianino, D.H. Gutmann, Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner, Mol. Cell. Neurosci. 49, 13–22 (2012) https://doi.org/10.1016/j.mcn.2011.08.008

  25. B. Rico, H.E. Beggs, D. Schahin-Reed, N. Kimes, A. Schmidt, L.F. Reichardt, Control of axonal branching and synapse formation by focal adhesion kinase. Nat. Neurosci. 7, 1059–1069 (2004). https://doi.org/10.1038/nn1317

    Article  CAS  Google Scholar 

  26. E. Robles, T.M. Gomez, Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat. Neurosci. 9, 1274–1283 (2006). https://doi.org/10.1038/nn1762

    Article  CAS  Google Scholar 

  27. M. Endo, T. Yamashita, Inactivation of Ras by p120GAP via focal adhesion kinase dephosphorylation mediates RGMa-induced growth cone collapse. J. neuroscience: official J. Soc. Neurosci. 29, 6649–6662 (2009). https://doi.org/10.1523/jneurosci.0927-09.2009

    Article  CAS  Google Scholar 

  28. S. Woo, D.J. Rowan, T.M. Gomez, Retinotopic mapping requires focal adhesion kinase-mediated regulation of growth cone adhesion. J. neuroscience: official J. Soc. Neurosci. 29, 13981–13991 (2009). https://doi.org/10.1523/jneurosci.4028-09.2009

    Article  CAS  Google Scholar 

  29. F. Kweh, M. Zheng, E. Kurenova, M. Wallace, V. Golubovskaya, W.G. Cance, Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol. Carcinog. 48, 1005–1017 (2009). https://doi.org/10.1002/mc.20552

    Article  CAS  Google Scholar 

  30. T. Ozawa, N. Araki, S. Yunoue, H. Tokuo, L. Feng, S. Patrakitkomjorn, T. Hara, Y. Ichikawa, K. Matsumoto, K. Fujii, H. Saya, The neurofibromatosis type 1 gene product neurofibromin enhances cell motility by regulating actin filament dynamics via the Rho-ROCK-LIMK2-cofilin pathway. J. Biol. Chem. 280, 39524–39533 (2005). https://doi.org/10.1074/jbc.M503707200

    Article  CAS  Google Scholar 

  31. P.I. Tsai, M. Wang, H.H. Kao, Y.J. Cheng, J.A. Walker, R.H. Chen, C.T. Chien, Neurofibromin mediates FAK signaling in confining synapse growth at Drosophila neuromuscular junctions. J. neuroscience: official J. Soc. Neurosci. 32, 16971–16981 (2012). https://doi.org/10.1523/jneurosci.1756-12.2012

    Article  CAS  Google Scholar 

  32. Y.L. Lin, Y.P. Hsueh, Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochem. Biophys. Res. Commun. 369, 747–752 (2008). https://doi.org/10.1016/j.bbrc.2008.02.095

    Article  CAS  Google Scholar 

  33. S. Patrakitkomjorn, D. Kobayashi, T. Morikawa, M.M. Wilson, N. Tsubota, A. Irie, T. Ozawa, M. Aoki, N. Arimura, K. Kaibuchi, H. Saya, N. Araki, Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J. Biol. Chem. 283, 9399–9413 (2008). https://doi.org/10.1074/jbc.M708206200

    Article  CAS  Google Scholar 

  34. M. Bergoug, M. Doudeau, F. Godin, C. Mosrin, B. Vallée, H. Bénédetti, Neurofibromin Struct. Funct. Regul. Cells 9, (2020) https://doi.org/10.3390/cells9112365

  35. M.E. Önger, B. Delibaş, A.P. Türkmen, E. Erener, B.Z. Altunkaynak, S. Kaplan, The role of growth factors in nerve regeneration. Drug discoveries & therapeutics 10, 285–291 (2017). https://doi.org/10.5582/ddt.2016.01058

    Article  CAS  Google Scholar 

  36. K. Cichowski, S. Santiago, M. Jardim, B.W. Johnson, T. Jacks, Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 17, 449–454 (2003). https://doi.org/10.1101/gad.1054703

    Article  CAS  Google Scholar 

  37. Y.Y. Zhang, T.A. Vik, J.W. Ryder, E.F. Srour, T. Jacks, K. Shannon, D.W. Clapp, Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J. Exp. Med. 187, 1893–1902 (1998). https://doi.org/10.1084/jem.187.11.1893

    Article  CAS  Google Scholar 

  38. K.S. Vogel, C.I. Brannan, N.A. Jenkins, N.G. Copeland, L.F. Parada, Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell 82, 733–742 (1995). https://doi.org/10.1016/0092-8674(95)90470-0

    Article  CAS  Google Scholar 

  39. S.L. Carroll, M.S. Stonecypher, Tumor suppressor mutations and growth factor signaling in the pathogenesis of NF1-associated peripheral nerve sheath tumors: II. The role of dysregulated growth factor signaling. J. Neuropathol. Exp. Neurol. 64, 1–9 (2005). https://doi.org/10.1093/jnen/64.1.1

    Article  CAS  Google Scholar 

  40. Y. Kawachi, H. Maruyama, Y. Ishitsuka, Y. Fujisawa, J. Furuta, Y. Nakamura, E. Ichikawa, M. Furumura, F. Otsuka, NF1 gene silencing induces upregulation of vascular endothelial growth factor expression in both Schwann and non-Schwann cells. Exp. Dermatol. 22, 262–265 (2013). https://doi.org/10.1111/exd.12115

    Article  CAS  Google Scholar 

  41. T.A. Mitsiadis, M. Salmivirta, T. Muramatsu, H. Muramatsu, H. Rauvala, E. Lehtonen, M. Jalkanen, I. Thesleff, Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Dev. (Cambridge England) 121, 37–51 (1995). https://doi.org/10.1242/dev.121.1.37

    Article  CAS  Google Scholar 

  42. T. Muramatsu, Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J. BioChem. 132, 359–371 (2002). https://doi.org/10.1093/oxfordjournals.jbchem.a003231

    Article  CAS  Google Scholar 

  43. I. Atallah, A.M. Cieza Rivera, O.M. Rivero Lezcano, L. Tascón-González, C. González-Cortés, C. Diez, T. Tascón, Fernández-Villa, V. Martín, Increased serum concentrations of estrogen-induced growth factors Midkine and FGF2 in NF1 patients with plexiform neurofibroma. Am. J. translational Res. 14, 3180–3188 (2022)

    CAS  Google Scholar 

  44. X. Guo, Y. Pan, M. Xiong, S. Sanapala, C. Anastasaki, O. Cobb, S. Dahiya, D.H. Gutmann, Midkine activation of CD8(+) T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat. Commun. 11, 2177 (2020). https://doi.org/10.1038/s41467-020-15770-3

    Article  CAS  Google Scholar 

  45. A. Moutal, E.T. Dustrude, R. Khanna, Sensitization of Ion Channels Contributes to Central and Peripheral Dysfunction in Neurofibromatosis Type 1, Mol. Neurobiol. 54, 3342–3349 (2017) https://doi.org/10.1007/s12035-016-9907-1

  46. Y. Wang, J.M. Brittain, S.M. Wilson, C.M. Hingtgen, R. Khanna, Altered calcium currents and axonal growth in NF1 haploinsufficient mice, Transl. Neurosci. 1, 106–114 (2010). https://doi.org/10.2478/v10134-010-0025-8

    Article  Google Scholar 

  47. C.M. Johannessen, E.E. Reczek, M.F. James, H. Brems, E. Legius, K. Cichowski, The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl. Acad. Sci. U.S.A. 102, 8573–8578 (2005). https://doi.org/10.1073/pnas.0503224102

    Article  CAS  Google Scholar 

  48. M. Rosner, M. Hanneder, N. Siegel, A. Valli, C. Fuchs, M. Hengstschläger, The mTOR pathway and its role in human genetic diseases. Mutat. Res. 659, 284–292 (2008). https://doi.org/10.1016/j.mrrev.2008.06.001

    Article  CAS  Google Scholar 

  49. J. Bockaert, P. Marin, mTOR in Brain Physiology and Pathologies. Physiol. Rev. 95, 1157–1187 (2015). https://doi.org/10.1152/physrev.00038.2014

    Article  CAS  Google Scholar 

  50. P.Y. Martin, S. Doly, A.M. Hamieh, E. Chapuy, V. Canale, M. Drop, S. Chaumont-Dubel, X. Bantreil, F. Lamaty, A.J. Bojarski, P. Zajdel, A. Eschalier, P. Marin, C. Courteix, mTOR activation by constitutively active serotonin6 receptors as new paradigm in neuropathic pain and its treatment. Prog. Neurobiol. 193, 101846 (2020). https://doi.org/10.1016/j.pneurobio.2020.101846

    Article  CAS  Google Scholar 

  51. E. Doucet, K. Grychowska, P. Zajdel, J. Bockaert, P. Marin, C. Bécamel, Blockade of Serotonin 5-HT(6) Receptor Constitutive Activity Alleviates Cognitive Deficits in a Preclinical Model of Neurofibromatosis Type 1, Int. J. Mol. Sci. 22, (2021) https://doi.org/10.3390/ijms221810178

  52. M.J. Ribeiro, I.R. Violante, I. Bernardino, R.A. Edden, M. Castelo-Branco, Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex 64, 194–208 (2015) https://doi.org/10.1016/j.cortex.2014.10.019

  53. I.R. Violante, M. Patricio, I. Bernardino, J. Rebola, A.J. Abrunhosa, N. Ferreira, M. Castelo-Branco, GABA deficiency in NF1: A multimodal [11 C]-flumazenil and spectroscopy study. Neurology 87, 897–904 (2016). https://doi.org/10.1212/wnl.0000000000003044

    Article  CAS  Google Scholar 

  54. R.M. Costa, N.B. Federov, J.H. Kogan, G.G. Murphy, J. Stern, M. Ohno, R. Kucherlapati, T. Jacks, A.J. Silva, Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415, 526–530 (2002). https://doi.org/10.1038/nature711

    Article  CAS  Google Scholar 

  55. Y. Cui, R.M. Costa, G.G. Murphy, Y. Elgersma, Y. Zhu, D.H. Gutmann, L.F. Parada, I. Mody, A.J. Silva, Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135, 549–560 (2008). https://doi.org/10.1016/j.cell.2008.09.060

    Article  CAS  Google Scholar 

  56. S. Hilfiker, V.A. Pieribone, A.J. Czernik, H.T. Kao, G.J. Augustine, P. Greengard, Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 269–279 (1999). https://doi.org/10.1098/rstb.1999.0378

    Article  CAS  Google Scholar 

  57. I.R. Violante, M.J. Ribeiro, R.A. Edden, P. Guimarães, I. Bernardino, J. Rebola, G. Cunha, E. Silva, M. Castelo-Branco, GABA deficit in the visual cortex of patients with neurofibromatosis type 1: genotype-phenotype correlations and functional impact. Brain: a journal of neurology 136, 918–925 (2013). https://doi.org/10.1093/brain/aws368

    Article  Google Scholar 

  58. Y. Wang, G.D. Nicol, D.W. Clapp, C.M. Hingtgen, Sensory neurons from Nf1 haploinsufficient mice exhibit increased excitability. J. Neurophysiol. 94, 3670–3676 (2005). https://doi.org/10.1152/jn.00489.2005

    Article  CAS  Google Scholar 

  59. J.H. Duan, Y. Wang, D. Duarte, M.R. Vasko, G.D. Nicol, C.M. Hingtgen, Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/- mice. Neurosci. Lett. 496, 70–74 (2011). https://doi.org/10.1016/j.neulet.2011.03.083

    Article  CAS  Google Scholar 

  60. K.E. Hodgdon, C.M. Hingtgen, G.D. Nicol, Dorsal root ganglia isolated from Nf1+/- mice exhibit increased levels of mRNA expression of voltage-dependent sodium channels. Neuroscience 206, 237–244 (2012). https://doi.org/10.1016/j.neuroscience.2011.12.045

    Article  CAS  Google Scholar 

  61. J.H. Duan, K.E. Hodgdon, C.M. Hingtgen, G.D. Nicol, N-type calcium current, Cav2.2, is enhanced in small-diameter sensory neurons isolated from Nf1+/- mice. Neuroscience 270, 192–202 (2014). https://doi.org/10.1016/j.neuroscience.2014.04.021

    Article  CAS  Google Scholar 

  62. C. Anastasaki, J. Mo, J.K. Chen, J. Chatterjee, Y. Pan, S.M. Scheaffer, O. Cobb, M. Monje, L.Q. Le, D.H. Gutmann, Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat. Commun. 13, 2785 (2022). https://doi.org/10.1038/s41467-022-30466-6

    Article  CAS  Google Scholar 

  63. J.S. Nix, J. Blakeley, F.J. Rodriguez, An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 139, 625–641 (2020). https://doi.org/10.1007/s00401-019-02002-2

    Article  Google Scholar 

  64. M. Bayat, A. Bayat, Neurological manifestations of neurofibromatosis: a review. Neurol. Sci. 41, 2685–2690 (2020) https://doi.org/10.1007/s10072-020-04400-x

  65. K.I. Ly, J.O. Blakeley, The diagnosis and management of neurofibromatosis Type 1. Med. Clin. North Am. 103, 1035–1054 (2019) https://doi.org/10.1016/j.mcna.2019.07.004

  66. A. Cannon, M.J. Chen, P. Li, K.P. Boyd, A. Theos, D.T. Redden, B. Korf, Cutaneous neurofibromas in Neurofibromatosis type I: a quantitative natural history study. Orphanet J. Rare Dis. 13, 31 (2018). https://doi.org/10.1186/s13023-018-0772-z

    Article  Google Scholar 

  67. L. Dugoff, E. Sujansky, Neurofibromatosis type 1 and pregnancy. Am. J. Med. Genet. 66, 7–10 (1996) https://doi.org/10.1002/(sici)1096-8628(19961202)66:1(7::Aid-ajmg2)3.0.Co;2-r

  68. R.E. Ferner, Neurofibromatosis 1. Eur. J. Hum. Genet 15, 131–138 (2007). https://doi.org/10.1038/sj.ejhg.5201676

    Article  CAS  Google Scholar 

  69. D.G. Evans, M.E. Baser, J. McGaughran, S. Sharif, E. Howard, A. Moran, Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39, 311–314 (2002). https://doi.org/10.1136/jmg.39.5.311

    Article  CAS  Google Scholar 

  70. P. de Robles, K.M. Fiest, A.D. Frolkis, T. Pringsheim, C. Atta, C.St Germaine-Smith, L. Day, D. Lam, N. Jette, The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro-oncology 17, 776–783 (2015). https://doi.org/10.1093/neuonc/nou283

    Article  Google Scholar 

  71. A. Rosenfeld, R. Listernick, J. Charrow, S. Goldman, Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Child’s Nerv. system: ChNS : official J. Int. Soc. Pediatr. Neurosurg. 26, 663–667 (2010). https://doi.org/10.1007/s00381-009-1024-2

    Article  Google Scholar 

  72. D.H. Gutmann, S.A. Rasmussen, P. Wolkenstein, M.M. MacCollin, A. Guha, P.D. Inskip, K.N. North, M. Poyhonen, P.H. Birch, J.M. Friedman, Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology 59, 759–761 (2002). https://doi.org/10.1212/wnl.59.5.759

    Article  CAS  Google Scholar 

  73. H.S. Venkatesh, T.B. Johung, V. Caretti, A. Noll, Y. Tang, S. Nagaraja, E.M. Gibson, C.W. Mount, J. Polepalli, S.S. Mitra, P.J. Woo, R.C. Malenka, H. Vogel, M. Bredel, P. Mallick, and M. Monje, Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion. Cell 161, 803–816 (2015). https://doi.org/10.1016/j.cell.2015.04.012

    Article  CAS  Google Scholar 

  74. H.S. Venkatesh, L.T. Tam, P.J. Woo, J. Lennon, S. Nagaraja, S.M. Gillespie, J. Ni, D.Y. Duveau, P.J. Morris, J.J. Zhao, C.J. Thomas, M. Monje, Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017). https://doi.org/10.1038/nature24014

    Article  CAS  Google Scholar 

  75. H.S. Venkatesh, W. Morishita, A.C. Geraghty, D. Silverbush, S.M. Gillespie, M. Arzt, L.T. Tam, C. Espenel, A. Ponnuswami, L. Ni, P.J. Woo, K.R. Taylor, A. Agarwal, A. Regev, D. Brang, H. Vogel, S. Hervey-Jumper, D.E. Bergles, M.L. Suvà, R.C. Malenka, M. Monje, Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019). https://doi.org/10.1038/s41586-019-1563-y

    Article  CAS  Google Scholar 

  76. V. Venkataramani, D.I. Tanev, C. Strahle, A. Studier-Fischer, L. Fankhauser, T. Kessler, C. Körber, M. Kardorff, M. Ratliff, R. Xie, H. Horstmann, M. Messer, S.P. Paik, J. Knabbe, F. Sahm, F.T. Kurz, A.A. Acikgöz, F. Herrmannsdörfer, A. Agarwal, D.E. Bergles, A. Chalmers, H. Miletic, S. Turcan, C. Mawrin, D. Hänggi, H.K. Liu, W. Wick, F. Winkler, T. Kuner, Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019). https://doi.org/10.1038/s41586-019-1564-x

    Article  CAS  Google Scholar 

  77. A. Comba, S.M. Faisal, P.J. Dunn, A.E. Argento, T.C. Hollon, W.N. Al-Holou, M.L. Varela, D.B. Zamler, G.L. Quass, P.F. Apostolides, C. Abel 2nd, C.E. Brown, P.E. Kish, A. Kahana, C.G. Kleer, S. Motsch, M.G. Castro, P.R. Lowenstein, Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor progression. Nat. Commun. 13, 3606 (2022). https://doi.org/10.1038/s41467-022-31340-1

    Article  CAS  Google Scholar 

  78. A. Comba, S.M. Faisal, M.L. Varela, T. Hollon, W.N. Al-Holou, Y. Umemura, F.J. Nunez, S. Motsch, M.G. Castro, P.R. Lowenstein, Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front. Oncol. 11, 703764 (2021). https://doi.org/10.3389/fonc.2021.703764

    Article  Google Scholar 

  79. A. Mega, M. Hartmark Nilsen, L.W. Leiss, N.P. Tobin, H. Miletic, L. Sleire, C. Strell, S. Nelander, C. Krona, D. Hägerstrand, P. Enger, M. Nistér, A. Östman, Astrocytes enhance glioblastoma growth. Glia 68, 316–327 (2020). https://doi.org/10.1002/glia.23718

    Article  Google Scholar 

  80. D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 19, 20–27 (2016). https://doi.org/10.1038/nn.4185

    Article  CAS  Google Scholar 

  81. J. Wei, P. Chen, P. Gupta, M. Ott, D. Zamler, C. Kassab, K.P. Bhat, M.A. Curran, J.F. de Groot, A.B. Heimberger, Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro-oncology 22, 180–194 (2020). https://doi.org/10.1093/neuonc/noz212

    Article  CAS  Google Scholar 

  82. J.C. Carlson, M. Cantu Gutierrez, B. Lozzi, E. Huang-Hobbs, W.D. Turner, B. Tepe, Y. Zhang, A.M. Herman, G. Rao, C.J. Creighton, J.D. Wythe, B. Deneen, Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro-oncology 23, 932–944 (2021). https://doi.org/10.1093/neuonc/noaa297

    Article  CAS  Google Scholar 

  83. D. Cahill, S. Turcan, Origin of Gliomas. Semin. Neurol. 38, 5–10 (2018). https://doi.org/10.1055/s-0037-1620238

    Article  Google Scholar 

  84. A.E.S. Watson, K. Goodkey, T. Footz, A. Voronova, Regulation of CNS precursor function by neuronal chemokines. Neurosci. Lett. 715, 134533 (2020). https://doi.org/10.1016/j.neulet.2019.134533

    Article  CAS  Google Scholar 

  85. Z.Q. Li, Z.Y. Yan, F.J. Lan, Y.Q. Dong, Y. Xiong, Suppression of NLRP3 inflammasome attenuates stress-induced depression-like behavior in NLGN3-deficient mice. Biochem. Biophys. Res. Commun. 501, 933–940 (2018) https://doi.org/10.1016/j.bbrc.2018.05.085

  86. C. Davey, A. Tallafuss, P. Washbourne, Differential expression of neuroligin genes in the nervous system of zebrafish, Dev. Dyn. 239, 703–714 (2010) https://doi.org/10.1002/dvdy.22195

  87. R. Liu, X.P. Qin, Y. Zhuang, Y. Zhang, H.B. Liao, J.C. Tang, M.X. Pan, F.F. Zeng, Y. Lei, R.X. Lei, S. Wang, A.C. Liu, J. Chen, Z.F. Zhang, D. Zhao, S.L. Wu, R.Z. Liu, Z.F. Wang, Q. Wan, Glioblastoma recurrence correlates with NLGN3 levels. Cancer Med. 7, 2848–2859 (2018). https://doi.org/10.1002/cam4.1538

    Article  CAS  Google Scholar 

  88. V. Serafim Junior, G.M.M. Fernandes, J.G. Oliveira-Cucolo, E.C. Pavarino, E.M. Goloni-Bertollo, Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 136, 155270 (2020). https://doi.org/10.1016/j.cyto.2020.155270

    Article  CAS  Google Scholar 

  89. J. Xiong, L. Zhou, Y. Lim, M. Yang, Y.H. Zhu, Z.W. Li, F.H. Zhou, Z.C. Xiao, X.F. Zhou, Mature BDNF promotes the growth of glioma cells in vitro. Oncol. Rep. 30, 2719–2724 (2013). https://doi.org/10.3892/or.2013.2746

    Article  CAS  Google Scholar 

  90. S.H. Jiang, L.P. Hu, X. Wang, J. Li, Z.G. Zhang, Neurotransmitters: emerging targets in cancer. Oncogene 39, 503–515 (2020). https://doi.org/10.1038/s41388-019-1006-0

    Article  CAS  Google Scholar 

  91. T.W. Hodo, M.T.P. de Aquino, A. Shimamoto, A. Shanker, Critical Neurotransmitters in the Neuroimmune Network. Front. Immunol. 11, 1869 (2020). https://doi.org/10.3389/fimmu.2020.01869

    Article  CAS  Google Scholar 

  92. K.L. Ligon, E. Huillard, S. Mehta, S. Kesari, H. Liu, J.A. Alberta, R.M. Bachoo, M. Kane, D.N. Louis, R.A. Depinho, D.J. Anderson, C.D. Stiles, D.H. Rowitch, Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503–517 (2007). https://doi.org/10.1016/j.neuron.2007.01.009

    Article  CAS  Google Scholar 

  93. A.J. Walker, T. Card, T.E. Bates, K. Muir, Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br. J. Cancer 104, 193–197 (2011). https://doi.org/10.1038/sj.bjc.6605996

    Article  CAS  Google Scholar 

  94. J. Li, S. Zhu, D. Kozono, K. Ng, D. Futalan, Y. Shen, J.C. Akers, T. Steed, D. Kushwaha, M. Schlabach, B.S. Carter, C.H. Kwon, F. Furnari, W. Cavenee, S. Elledge, C.C. Chen, Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 5, 882–893 (2014). https://doi.org/10.18632/oncotarget.1801

    Article  Google Scholar 

  95. M. Tonini, L. Cipollina, E. Poluzzi, F. Crema, G.R. Corazza, F. De Ponti, Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Aliment. Pharmacol. Ther. 19, 379–390 (2004). https://doi.org/10.1111/j.1365-2036.2004.01867.x

    Article  CAS  Google Scholar 

  96. A.S. Chi, R.S. Tarapore, M.D. Hall, N. Shonka, S. Gardner, Y. Umemura, A. Sumrall, Z. Khatib, S. Mueller, C. Kline, W. Zaky, S. Khatua, S.P. Weathers, Y. Odia, T.N. Niazi, D. Daghistani, I. Cherrick, D. Korones, M.A. Karajannis, X.T. Kong, J. Minturn, A. Waanders, I. Arillaga-Romany, T. Batchelor, P.Y. Wen, K. Merdinger, L. Schalop, M. Stogniew, J.E. Allen, W. Oster, M.P. Mehta, Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J. Neurooncol. 145, 97–105 (2019). https://doi.org/10.1007/s11060-019-03271-3

    Article  CAS  Google Scholar 

  97. I. Arrillaga-Romany, A.S. Chi, J.E. Allen, W. Oster, P.Y. Wen, T.T. Batchelor, A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget 8, 79298–79304 (2017). https://doi.org/10.18632/oncotarget.17837

    Article  Google Scholar 

  98. J.E. Allen, G. Krigsfeld, P.A. Mayes, L. Patel, D.T. Dicker, A.S. Patel, N.G. Dolloff, E. Messaris, K.A. Scata, W. Wang, J.Y. Zhou, G.S. Wu, and W.S. El-Deiry, Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci. Transl. Med. 5, 171ra117 (2013). https://doi.org/10.1126/scitranslmed.3004828

    Article  CAS  Google Scholar 

  99. A. Arce-Sillas, E. Sevilla-Reyes, D.D. Álvarez-Luquín, A. Guevara-Salinas, M.C. Boll, C.A. Pérez-Correa, A.V. Vivas-Almazan, U. Rodríguez-Ortiz, C. Castellanos Barba, M. Hernandez, G. Fragoso, E. Sciutto, G. Cárdenas, and L.V. Adalid-Peralta, Expression of dopamine receptors in immune regulatory cells. Neuroimmunomodulation 26, 159–166 (2019). https://doi.org/10.1159/000501187

    Article  CAS  Google Scholar 

  100. F. McKenna, P.J. McLaughlin, B.J. Lewis, G.C. Sibbring, J.A. Cummerson, D. Bowen-Jones, R.J. Moots, Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J. Neuroimmunol. 132, 34–40 (2002). https://doi.org/10.1016/s0165-5728(02)00280-1

    Article  CAS  Google Scholar 

  101. J.M. Beaulieu, R.R. Gainetdinov, The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011). https://doi.org/10.1124/pr.110.002642

    Article  CAS  Google Scholar 

  102. K. Bhat, M. Saki, F. Cheng, L. He, L. Zhang, A. Ioannidis, D. Nathanson, J. Tsang, S.J. Bensinger, P.L. Nghiemphu, T.F. Cloughesy, L.M. Liau, H.I. Kornblum, F. Pajonk, Dopamine Receptor Antagonists, Radiation, and Cholesterol Biosynthesis in Mouse Models of Glioblastoma. J. Natl Cancer Inst. 113, 1094–1104 (2021). https://doi.org/10.1093/jnci/djab018

    Article  CAS  Google Scholar 

  103. L.F. Mohammad-Zadeh, L. Moses, S.M. Gwaltney-Brant, Serotonin: a review. J. Vet. Pharmacol. Ther. 31, 187–199 (2008). https://doi.org/10.1111/j.1365-2885.2008.00944.x

    Article  CAS  Google Scholar 

  104. D. Sarrouilhe, J. Clarhaut, N. Defamie, M. Mesnil, Serotonin and cancer: what is the link? Curr. Mol. Med. 15, 62–77 (2015). https://doi.org/10.2174/1566524015666150114113411

    Article  CAS  Google Scholar 

  105. G. Fouquet, T. Coman, O. Hermine, F. Côté, Serotonin, hematopoiesis and stem cells. Pharmacol. Res. 140, 67–74 (2019). https://doi.org/10.1016/j.phrs.2018.08.005

    Article  CAS  Google Scholar 

  106. D. Hoyer, D.E. Clarke, J.R. Fozard, P.R. Hartig, G.R. Martin, E.J. Mylecharane, P.R. Saxena, P.P. Humphrey, International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 46, 157–203 (1994)

    CAS  Google Scholar 

  107. A. Merzak, S. Koochekpour, M.P. Fillion, G. Fillion, G.J. Pilkington, Expression of serotonin receptors in human fetal astrocytes and glioma cell lines: a possible role in glioma cell proliferation and migration, Brain research. Mol. Brain Res. 41, 1–7 (1996). https://doi.org/10.1016/0169-328x(96)00058-7

    Article  CAS  Google Scholar 

  108. B. Abadi, Y. Shahsavani, M. Faramarzpour, N. Rezaei, H.R. Rahimi, Antidepressants with anti-tumor potential in treating glioblastoma: A narrative review. Fundam. Clin. Pharmacol. 36, 35–48 (2022). https://doi.org/10.1111/fcp.12712

    Article  CAS  Google Scholar 

  109. K.H. Liu, S.T. Yang, Y.K. Lin, J.W. Lin, Y.H. Lee, J.Y. Wang, C.J. Hu, E.Y. Lin, S.M. Chen, C.K. Then, S.C. Shen, Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis. Oncotarget 6, 5088–5101 (2015). https://doi.org/10.18632/oncotarget.3243

    Article  Google Scholar 

  110. V.C. Chen, Y.H. Hsieh, L.J. Chen, T.C. Hsu, B.S. Tzang, Escitalopram oxalate induces apoptosis in U-87MG cells and autophagy in GBM8401 cells. J. Cell. Mol. Med. 22, 1167–1178 (2018). https://doi.org/10.1111/jcmm.13372

    Article  CAS  Google Scholar 

  111. C. Shi, N. Lamba, L.J. Zheng, D. Cote, Q.R. Regestein, C.M. Liu, Q. Tran, S. Routh, T.R. Smith, R.A. Mekary, M.L.D. Broekman, Depression and survival of glioma patients: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 172, 8–19 (2018). https://doi.org/10.1016/j.clineuro.2018.06.016

    Article  CAS  Google Scholar 

  112. S. Otto-Meyer, R. DeFaccio, C. Dussold, E. Ladomersky, L. Zhai, K.L. Lauing, L.R. Bollu, C. Amidei, R.V. Lukas, D.M. Scholtens, D.A. Wainwright, A retrospective survival analysis of Glioblastoma patients treated with selective serotonin reuptake inhibitors. Brain Behav. Immun. Health 2, (2020) https://doi.org/10.1016/j.bbih.2019.100025

  113. A. Jussofie, V. Reinhardt, R. Kalff, GABA binding sites: their density, their affinity to muscimol and their behaviour against neuroactive steroids in human gliomas of different degrees of malignancy. J. Neural Transm. Gen. Sections 96, 233–241 (1994). https://doi.org/10.1007/bf01294790

    Article  CAS  Google Scholar 

  114. A. Blanchart, R. Fernando, M. Häring, N. Assaife-Lopes, R.A. Romanov, M. Andäng, T. Harkany, P. Ernfors, Endogenous GAB(AA) receptor activity suppresses glioma growth. Oncogene 36, 777–786 (2017). https://doi.org/10.1038/onc.2016.245

    Article  CAS  Google Scholar 

  115. S. Han, Y. Liu, S.J. Cai, M. Qian, J. Ding, M. Larion, M.R. Gilbert, C. Yang, IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br. J. Cancer 122, 1580–1589 (2020). https://doi.org/10.1038/s41416-020-0814-x

    Article  Google Scholar 

  116. L. Dang, K. Yen, E.C. Attar, IDH mutations in cancer and progress toward development of targeted therapeutics. Annals of oncology: official journal of the European Society for Medical Oncology 27, 599–608 (2016). https://doi.org/10.1093/annonc/mdw013

    Article  CAS  Google Scholar 

  117. T. Gong, X. Zhang, X. Wei, S. Yuan, M.G. Saleh, Y. Song, R.A. Edden, G. Wang, GSH and GABA decreases in IDH1-mutated low-grade gliomas detected by HERMES spectral editing at 3 T in vivo. Neurochem. Int. 141, 104889 (2020). https://doi.org/10.1016/j.neuint.2020.104889

    Article  CAS  Google Scholar 

  118. A. Rubio-Casillas, A. Fernández-Guasti, The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev. Neurosci. 27, 599–622 (2016). https://doi.org/10.1515/revneuro-2015-0066

    Article  CAS  Google Scholar 

  119. N. Nakamichi, T. Takarada, Y. Yoneda, Neurogenesis mediated by gamma-aminobutyric acid and glutamate signaling. J. Pharmacol. Sci. 110, 133–149 (2009). https://doi.org/10.1254/jphs.08r03cr

    Article  CAS  Google Scholar 

  120. Z. Pei, K.C. Lee, A. Khan, G. Erisnor, H.Y. Wang, Pathway analysis of glutamate-mediated, calcium-related signaling in glioma progression. Biochem. Pharmacol. 176, 113814 (2020). https://doi.org/10.1016/j.bcp.2020.113814

    Article  CAS  Google Scholar 

  121. A. Reiner, J. Levitz, Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 98, 1080–1098 (2018). https://doi.org/10.1016/j.neuron.2018.05.018

    Article  CAS  Google Scholar 

  122. S.S. Shin, J. Namkoong, B.A. Wall, R. Gleason, H.J. Lee, S. Chen, Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res. 21, 368–378 (2008). https://doi.org/10.1111/j.1755-148X.2008.00452.x

    Article  CAS  Google Scholar 

  123. F. Gardoni, J. Stanic, D. Scheggia, A. Benussi, B. Borroni and M. Di Luca, NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 10 (2021) https://doi.org/10.3390/cells10010077

  124. S. Ishiuchi, K. Tsuzuki, Y. Yoshida, N. Yamada, N. Hagimura, H. Okado, A. Miwa, H. Kurihara, Y. Nakazato, M. Tamura, T. Sasaki, S. Ozawa, Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 8, 971–978 (2002). https://doi.org/10.1038/nm746

    Article  CAS  Google Scholar 

  125. C.M. Niswender, P.J. Conn, Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010). https://doi.org/10.1146/annurev.pharmtox.011008.145533

    Article  CAS  Google Scholar 

  126. T. Takano, J.H. Lin, G. Arcuino, Q. Gao, J. Yang, M. Nedergaard, Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015 (2001). https://doi.org/10.1038/nm0901-1010

    Article  CAS  Google Scholar 

  127. L.J. Yu, B.A. Wall, J. Wangari-Talbot, S. Chen, Metabotropic glutamate receptors in cancer. Neuropharmacology 115, 193–202 (2017). https://doi.org/10.1016/j.neuropharm.2016.02.011

    Article  CAS  Google Scholar 

  128. L. Iacovelli, A. Arcella, G. Battaglia, S. Pazzaglia, E. Aronica, P. Spinsanti, A. Caruso, E. De Smaele, A. Saran, A. Gulino, M. D’Onofrio, F. Giangaspero, F. Nicoletti, Pharmacological activation of mGlu4 metabotropic glutamate receptors inhibits the growth of medulloblastomas. J. neuroscience: official J. Soc. Neurosci. 26, 8388–8397 (2006). https://doi.org/10.1523/jneurosci.2285-06.2006

    Article  CAS  Google Scholar 

  129. C. Zhang, X.R. Yuan, H.Y. Li, Z.J. Zhao, Y.W. Liao, X.Y. Wang, J. Su, S.S. Sang, Q. Liu, Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: involvement of PI3K/Akt/mTOR pathway. Cell. Physiol. Biochem. 35, 419–432 (2015) https://doi.org/10.1159/000369707

  130. M. D’Onofrio, A. Arcella, V. Bruno, R.T. Ngomba, G. Battaglia, V. Lombari, G. Ragona, A. Calogero, F. Nicoletti, Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J. Neurochem. 84, 1288–1295 (2003). https://doi.org/10.1046/j.1471-4159.2003.01633.x

    Article  CAS  Google Scholar 

  131. M.S.L. Pereira, F. Klamt, C.C. Thomé, P.V. Worm, D.L. de Oliveira, Metabotropic glutamate receptors as a new therapeutic target for malignant gliomas. Oncotarget 8, 22279–22298 (2017). https://doi.org/10.18632/oncotarget.15299

    Article  Google Scholar 

  132. P.F. Behrens, H. Langemann, R. Strohschein, J. Draeger, J. Hennig, Extracellular glutamate and other metabolites in and around RG2 rat glioma: an intracerebral microdialysis study. J. Neurooncol. 47, 11–22 (2000). https://doi.org/10.1023/a:1006426917654

    Article  CAS  Google Scholar 

  133. R. Listernick, R.E. Ferner, G.T. Liu, D.H. Gutmann, Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann. Neurol. 61, 189–198 (2007). https://doi.org/10.1002/ana.21107

    Article  CAS  Google Scholar 

  134. G.C. Daginakatte, D.H. Gutmann, Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum. Mol. Genet. 16, 1098–1112 (2007). https://doi.org/10.1093/hmg/ddm059

    Article  CAS  Google Scholar 

  135. M.E. Freret, D.H. Gutmann, Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. J. Neurosci. Res. 97, 45–56 (2019). https://doi.org/10.1002/jnr.24250

    Article  CAS  Google Scholar 

  136. W.W. Pong, S.B. Higer, S.M. Gianino, R.J. Emnett, D.H. Gutmann, Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann. Neurol. 73, 303–308 (2013). https://doi.org/10.1002/ana.23813

    Article  CAS  Google Scholar 

  137. A.C. Solga, W.W. Pong, K.Y. Kim, P.J. Cimino, J.A. Toonen, J. Walker, T. Wylie, V. Magrini, M. Griffith, O.L. Griffith, A. Ly, M.H. Ellisman, E.R. Mardis, D.H. Gutmann, RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 17, 776–788 (2015) https://doi.org/10.1016/j.neo.2015.10.002

  138. C.Yu-Ju Wu, C.H. Chen, C.Y. Lin, L.Y. Feng, Y.C. Lin, K.C. Wei, C.Y. Huang, J.Y. Fang, P.Y. Chen, CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro-oncology 22, 253–266 (2020). https://doi.org/10.1093/neuonc/noz189

    Article  CAS  Google Scholar 

  139. Y. Pan, M. Xiong, R. Chen, Y. Ma, C. Corman, M. Maricos, U. Kindler, M. Semtner, Y.H. Chen, S. Dahiya, D.H. Gutmann, Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev. 32, 491–496 (2018). https://doi.org/10.1101/gad.310797.117

    Article  CAS  Google Scholar 

  140. Y.H. Chen, L.D. McGowan, P.J. Cimino, S. Dahiya, J.R. Leonard, D.Y. Lee, D.H. Gutmann, Mouse low-grade gliomas contain cancer stem cells with unique molecular and functional properties. Cell Rep. 10, 1899–1912 (2015). https://doi.org/10.1016/j.celrep.2015.02.041

    Article  CAS  Google Scholar 

  141. J. Chatterjee, S. Sanapala, O. Cobb, A. Bewley, A.K. Goldstein, E. Cordell, X. Ge, J.R. Garbow, M.J. Holtzman, D.H. Gutmann, Asthma reduces glioma formation by T cell decorin-mediated inhibition of microglia. Nat. Commun. 12, 7122 (2021). https://doi.org/10.1038/s41467-021-27455-6

    Article  CAS  Google Scholar 

  142. Y. Pan, J.D. Hysinger, T. Barron, N.F. Schindler, O. Cobb, X. Guo, B. Yalçın, C. Anastasaki, S.B. Mulinyawe, A. Ponnuswami, S. Scheaffer, Y. Ma, K.C. Chang, X. Xia, J.A. Toonen, J.J. Lennon, E.M. Gibson, J.R. Huguenard, L.M. Liau, J.L. Goldberg, M. Monje, D.H. Gutmann, NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277–282 (2021). https://doi.org/10.1038/s41586-021-03580-6

    Article  CAS  Google Scholar 

  143. K.R. Jessen, R. Mirsky, A.C. Lloyd, Schwann Cells: Development and Role in Nerve Repair, Cold Spring Harb. Perspect. Biol. 7, a020487 (2015) https://doi.org/10.1101/cshperspect.a020487

  144. H. Zheng, L. Chang, N. Patel, J. Yang, L. Lowe, D.K. Burns, Y. Zhu, Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer cell. 13, 117–128 (2008). https://doi.org/10.1016/j.ccr.2008.01.002

    Article  CAS  Google Scholar 

  145. N.M. Joseph, J.T. Mosher, J. Buchstaller, P. Snider, P.E. McKeever, M. Lim, S.J. Conway, L.F. Parada, Y. Zhu, S.J. Morrison, The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer cell. 13, 129–140 (2008). https://doi.org/10.1016/j.ccr.2008.01.003

    Article  CAS  Google Scholar 

  146. S. Parrinello, L.A. Noon, M.C. Harrisingh, P. Wingfield Digby, L.H. Rosenberg, C.A. Cremona, P. Echave, A.M. Flanagan, L.F. Parada, A.C. Lloyd, NF1 loss disrupts Schwann cell-axonal interactions: a novel role for semaphorin 4F. Genes Dev. 22, 3335–3348 (2008). https://doi.org/10.1101/gad.490608

    Article  CAS  Google Scholar 

  147. K.J. Radomska, F. Coulpier, A. Gresset, A. Schmitt, A. Debbiche, S. Lemoine, P. Wolkenstein, J.M. Vallat, P. Charnay, P. Topilko, Cellular Origin, Tumor Progression, and Pathogenic Mechanisms of Cutaneous Neurofibromas Revealed by Mice with Nf1 Knockout in Boundary Cap Cells. Cancer Discov. 9, 130–147 (2019). https://doi.org/10.1158/2159-8290.Cd-18-0156

    Article  CAS  Google Scholar 

  148. F.L. Rice, G. Houk, J.P. Wymer, S.J.C. Gosline, J. Guinney, J. Wu, N. Ratner, M.P. Jankowski, S. La Rosa, M. Dockum, J.R. Storey, S.L. Carroll, P.J. Albrecht, V.M. Riccardi, The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PloS one 14, e0216527 (2019) https://doi.org/10.1371/journal.pone.0216527

  149. C.P. Liao, S. Pradhan, Z. Chen, A.J. Patel, R.C. Booker, L.Q. Le, The role of nerve microenvironment for neurofibroma development. Oncotarget 7, 61500–61508 (2016). https://doi.org/10.18632/oncotarget.11133

    Article  Google Scholar 

  150. J. Korfhage, D.B. Lombard, Malignant peripheral nerve sheath tumors: From epigenome to bedside. Mol. Cancer Res. 17, 1417–1428 (2019). https://doi.org/10.1158/1541-7786.Mcr-19-0147

    Article  CAS  Google Scholar 

  151. A.W. James, E. Shurell, A. Singh, S.M. Dry, F.C. Eilber, Malignant Peripheral Nerve Sheath Tumor. Surg. Oncol. Clin. N. Am. 25, 789–802 (2016). https://doi.org/10.1016/j.soc.2016.05.009

    Article  Google Scholar 

  152. S.L. Carroll, M.S. Stonecypher, Tumor suppressor mutations and growth factor signaling in the pathogenesis of NF1-associated peripheral nerve sheath tumors. I. The role of tumor suppressor mutations. J. Neuropathol. Exp. Neurol. 63, 1115–1123 (2004). https://doi.org/10.1093/jnen/63.11.1115

    Article  CAS  Google Scholar 

  153. M. Rahmatullah, A. Schroering, K. Rothblum, R.C. Stahl, B. Urban, D.J. Carey, Synergistic regulation of Schwann cell proliferation by heregulin and forskolin, Molecular and cellular biology 18, 6245–6252 (1998) https://doi.org/10.1128/mcb.18.11.6245

  154. S.L. Carroll, M.L. Miller, P.W. Frohnert, S.S. Kim, J.A. Corbett, Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J. neuroscience: official J. Soc. Neurosci. 17, 1642–1659 (1997). https://doi.org/10.1523/jneurosci.17-05-01642.1997

    Article  CAS  Google Scholar 

  155. R.P. Huijbregts, K.A. Roth, R.E. Schmidt, S.L. Carroll, Hypertrophic neuropathies and malignant peripheral nerve sheath tumors in transgenic mice overexpressing glial growth factor beta3 in myelinating Schwann cells. J. neuroscience: official J. Soc. Neurosci. 23, 7269–7280 (2003). https://doi.org/10.1523/jneurosci.23-19-07269.2003

    Article  CAS  Google Scholar 

  156. M.S. Stonecypher, S.J. Byer, W.E. Grizzle, S.L. Carroll, Activation of the neuregulin-1/ErbB signaling pathway promotes the proliferation of neoplastic Schwann cells in human malignant peripheral nerve sheath tumors. Oncogene 24, 5589–5605 (2005). https://doi.org/10.1038/sj.onc.1208730

    Article  CAS  Google Scholar 

  157. J.M. Eckert, S.J. Byer, B.J. Clodfelder-Miller, S.L. Carroll, Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 57, 1501–1520 (2009). https://doi.org/10.1002/glia.20866

    Article  Google Scholar 

  158. S.J. Kazmi, S.J. Byer, J.M. Eckert, A.N. Turk, R.P. Huijbregts, N.M. Brossier, W.E. Grizzle, F.M. Mikhail, K.A. Roth, S.L. Carroll, Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am. J. Pathol. 182, 646–667 (2013). https://doi.org/10.1016/j.ajpath.2012.11.017

    Article  CAS  Google Scholar 

  159. S.N. Brosius, A.N. Turk, S.J. Byer, N.M. Brossier, L. Kohli, A. Whitmire, F.M. Mikhail, K.A. Roth, S.L. Carroll, Neuregulin-1 overexpression and Trp53 haploinsufficiency cooperatively promote de novo malignant peripheral nerve sheath tumor pathogenesis. Acta Neuropathol. 127, 573–591 (2014). https://doi.org/10.1007/s00401-013-1209-3

    Article  CAS  Google Scholar 

  160. K.L. Carraway 3rd and L.C. Cantley, A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78, 5–8 (1994). https://doi.org/10.1016/0092-8674(94)90564-9

    Article  CAS  Google Scholar 

  161. J.F. Longo, S.N. Brosius, L. Black, S.H. Worley, R.C. Wilson, K.A. Roth, S.L. Carroll, ErbB4 promotes malignant peripheral nerve sheath tumor pathogenesis via Ras-independent mechanisms. Cell. communication and signaling: CCS 17, 74 (2019). https://doi.org/10.1186/s12964-019-0388-5

    Article  CAS  Google Scholar 

  162. Z. Wang, ErbB Receptors and Cancer, (Clifton, Methods in molecular biology. N J. ) 1652, 3–35 (2017). https://doi.org/10.1007/978-1-4939-7219-7_1

    Article  CAS  Google Scholar 

  163. R. Huang, A. Fujimura, E. Nakata, S. Takihira, H. Inoue, S. Yoshikawa, T. Hiyama, T. Ozaki, A. Kamiya, Adrenergic signaling promotes the expansion of cancer stem-like cells of malignant peripheral nerve sheath tumors. Biochem. Biophys. Res. Commun. 557, 199–205 (2021). https://doi.org/10.1016/j.bbrc.2021.03.172

    Article  CAS  Google Scholar 

  164. S. Li, Z. Chen, L.Q. Le, New insights into the neurofibroma tumor cells of origin. Neurooncol. Adv. 2, i13-i22 (2020) https://doi.org/10.1093/noajnl/vdz044

  165. D.Y. Lee, S.M. Gianino, D.H. Gutmann, Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer cell. 22, 131–138 (2012). https://doi.org/10.1016/j.ccr.2012.05.036

    Article  CAS  Google Scholar 

  166. F.C. Yang, D.A. Ingram, S. Chen, Y. Zhu, J. Yuan, X. Li, X. Yang, S. Knowles, W. Horn, Y. Li, S. Zhang, Y. Yang, S.T. Vakili, M. Yu, D. Burns, K. Robertson, G. Hutchins, L.F. Parada, D.W. Clapp, Nf1-dependent tumors require a microenvironment containing Nf1+/-- and c-kit-dependent bone marrow. Cell 135, 437–448 (2008). https://doi.org/10.1016/j.cell.2008.08.041

    Article  CAS  Google Scholar 

  167. A. Bui, C. Jiang, R.M. McKay, L.J. Klesse, L.Q. Le, Insights into the Pathogenesis of NF1-Associated Neoplasms, JID innovations: skin science from molecules to population health 1, (2021) https://doi.org/10.1016/j.xjidi.2021.100044

  168. L.B. King, T. Boto, V. Botero, A.M. Aviles, B.M. Jomsky, C. Joseph, J.A. Walker, S.M. Tomchik, Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet. 16, e1008920 (2020). https://doi.org/10.1371/journal.pgen.1008920

    Article  CAS  Google Scholar 

  169. V. Pinna, V. Lanari, P. Daniele, F. Consoli, E. Agolini, K. Margiotti, I. Bottillo, I. Torrente, A. Bruselles, C. Fusilli, A. Ficcadenti, S. Bargiacchi, E. Trevisson, M. Forzan, S. Giustini, C. Leoni, G. Zampino, M.C. Digilio, B. Dallapiccola, M. Clementi, M. Tartaglia, A. De Luca, p.Arg1809Cys substitution in neurofibromin is associated with a distinctive NF1 phenotype without neurofibromas. Eur. J. Hum. genetics: EJHG 23, 1068–1071 (2015). https://doi.org/10.1038/ejhg.2014.243

    Article  CAS  Google Scholar 

  170. M. Upadhyaya, S.M. Huson, M. Davies, N. Thomas, N. Chuzhanova, S. Giovannini, D.G. Evans, E. Howard, B. Kerr, S. Griffiths, C. Consoli, L. Side, D. Adams, M. Pierpont, R. Hachen, A. Barnicoat, H. Li, P. Wallace, J.P. Van Biervliet, D. Stevenson, D. Viskochil, D. Baralle, E. Haan, V. Riccardi, P. Turnpenny, C. Lazaro, L. Messiaen, An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970–2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am. J. Hum. Genet. 80, 140–151 (2007). https://doi.org/10.1086/510781

    Article  CAS  Google Scholar 

  171. C. Ejerskov, M. Gaustadnes, J.R. Ostergaard, K. Krogh, K. Thorsen, A.D. Borglum, A. Haagerup, Exploring associations between constipation, severity of neurofibromatosis type 1 and NF1 mutational spectrum. Sci. Rep. 11, 9179 (2021). https://doi.org/10.1038/s41598-021-87686-x

    Article  CAS  Google Scholar 

  172. M. Scala, I. Schiavetti, F. Madia, C. Chelleri, G. Piccolo, A. Accogli, A. Riva, V. Salpietro, R. Bocciardi, G. Morcaldi, M. Di Duca, F. Caroli, A. Verrico, C. Milanaccio, G. Viglizzo, M. Traverso, S. Baldassari, P. Scudieri, M. Iacomino, G. Piatelli, C. Minetti, P. Striano, M.L. Garrè, P. De Marco, M.C. Diana, V. Capra, M. Pavanello, F. Zara, Genotype-Phenotype Correlations in Neurofibromatosis Type 1: A Single-Center Cohort Study. Cancers 13 (2021) https://doi.org/10.3390/cancers13081879

  173. H. Kehrer-Sawatzki, D.N. Cooper, Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum. Genet. 140, 1635–1649 (2021). https://doi.org/10.1007/s00439-021-02363-3

    Article  CAS  Google Scholar 

  174. T. Johung, M. Monje, Neuronal activity in the glioma microenvironment. Curr. Opin. Neurobiol. 47, 156–161 (2017). https://doi.org/10.1016/j.conb.2017.10.009

    Article  CAS  Google Scholar 

  175. D.P. Radin, S.E. Tsirka, Interactions between Tumor Cells, Neurons, and Microglia in the Glioma Microenvironment, Int. J. Mol. Sci. 21, (2020) https://doi.org/10.3390/ijms21228476

  176. M.L. Broekman, S.L.N. Maas, E.R. Abels, T.R. Mempel, A.M. Krichevsky, X.O. Breakefield, Multidimensional communication in the microenvirons of glioblastoma, Nature reviews. Neurology 14, 482–495 (2018). https://doi.org/10.1038/s41582-018-0025-8

    Article  Google Scholar 

  177. S. Friedman, R. Levy, W. Garrett, D. Doval, Bondarde, S.J.C. Research, Clinical Benefit of INCB7839, a Potent and Selective Inhibitor of ADAM10 and ADAM17, in Combination with Trastuzumab in Metastatic HER2 Positive Breast Cancer Patients. Cancer Res 69, 5056–5056 (2009)

  178. J. Infante, H.A. Burris, N. Lewis, A multicenter phase Ib study of the safety, pharmacokinetics, biological activity and clinical efficacy of INCB7839, a potent and selective inhibitor of ADAM10 and ADAM17. (2007)

  179. M.W. Ronellenfitsch, P.N. Harter, M. Kirchner, C. Heining, B. Hutter, L. Gieldon, J. Schittenhelm, M.U. Schuhmann, M. Tatagiba, G. Marquardt, M. Wagner, V. Endris, C.H. Brandts, V.F. Mautner, E. Schröck, W. Weichert, B. Brors, A. von Deimling, M. Mittelbronn, J.P. Steinbach, D.E. Reuss, H. Glimm, A. Stenzinger, S. Fröhling, Targetable ERBB2 mutations identified in neurofibroma/schwannoma hybrid nerve sheath tumors. J. Clin. Investig. 130, 2488–2495 (2020). https://doi.org/10.1172/jci130787

    Article  CAS  Google Scholar 

  180. B. Weiss, B.C. Widemann, P. Wolters, E. Dombi, A. Vinks, A. Cantor, J. Perentesis, E. Schorry, N. Ullrich, D.H. Gutmann, J. Tonsgard, D. Viskochil, B. Korf, R.J. Packer, M.J. Fisher, Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro-oncology 17, 596–603 (2015). https://doi.org/10.1093/neuonc/nou235

    Article  CAS  Google Scholar 

  181. N.J. Ullrich, S.P. Prabhu, A.T. Reddy, M.J. Fisher, R. Packer, S. Goldman, N.J. Robison, D.H. Gutmann, D.H. Viskochil, J.C. Allen, B. Korf, A. Cantor, G. Cutter, C. Thomas, J.P. Perentesis, T. Mizuno, A.A. Vinks, P.E. Manley, S.N. Chi, M.W. Kieran, A phase II study of continuous oral mTOR inhibitor everolimus for recurrent, radiographic-progressive neurofibromatosis type 1-associated pediatric low-grade glioma: a Neurofibromatosis Clinical Trials Consortium study. Neuro-oncology 22, 1527–1535 (2020). https://doi.org/10.1093/neuonc/noaa071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Figures 1 and 2 were designed using BioRender.com web resource.

Funding

This work was supported by grants from National Natural Science Foundation of China (82102344; 82172228); Shanghai Rising Star Program supported by Science and Technology Commission of Shanghai Municipality (20QA1405600); Science and Technology Commission of Shanghai Mu-nicipality (19JC1413); Natural Science Foundation of Shanghai (22ZR1422300); “Chenguang Pro-gram” supported by Shanghai Education Development Foundation (SHEDF) (19CG18); Shanghai Municipal Key Clinical Specialty (shslczdzk00901); Innovative research team of high-level local universities in Shanghai (SSMU-ZDCX20180700).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ZC W, QF L, and HB Z; methodology, ZC W, QF L, and HB Z; investigation, LL G and MY X; resources, LL G and MY X; data curation, LL G and MY X; writing—original draft preparation, LL G; writing—review and editing, MY X, ZC W, and HB Z; visualization, LL G; supervision, ZC W, QF L, and HB Z; project administration, ZC W, QF L, and HB Z; funding acquisition, ZC W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhi-Chao Wang.

Ethics declarations

Ethical approval and Consent to participate

Not applicable.

Human Ethics

Not applicable.

Consent for publication

Not applicable.

Availability of supporting data

Not applicable.

Competing interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

# These authors contributed equally to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, LL., Xing, MY., Zhang, HB. et al. Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol. 45, 1137–1153 (2022). https://doi.org/10.1007/s13402-022-00723-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00723-3

Keywords

Navigation