Skip to main content
Log in

Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world with a high mortality rate. Receptor tyrosine kinases play important roles in the occurrence and development of various cancers. Discoid protein domain receptor 1 (DDR1) is a special type of transmembrane receptor tyrosine kinase. Here, we show that the expression of DDR1 is significantly increased in HCC and is related to a poor clinical prognosis.

Methods

The expression of DDR1 in HCC cell lines and primary HCC specimens was evaluated using Western blotting and immunohistochemistry. A correlation between DDR1 and SLC1A5 expression was also investigated in primary HCC specimens. Cell proliferation was evaluated using in vitro CCK8 and colony formation assays. Gene knock-down and overexpression assays, CHX, NH4CL and Mg132 interference tests and immunoprecipitation, as well as nude mouse xenograft models were used to assess the mechanism by which DDR1 promotes tumorigenesis in vitro and in vivo.

Results

We found that DDR1 promotes the proliferation of HCC cells and accelerates the growth of HCC tumor xenografts, while DDR1 downregulation had the opposite effect. We also found that loss or gain of DDR1 expression affected HCC cell cycle progression. Mechanistically, we found that DDR1 interacts with SLC1A5, which belongs to the solute carrier (SLC) family of transporters, and regulates its stability, thereby affecting the mTORC1 signaling pathway. In addition, we found that SLC1A5 regulation by DDR1 can be restored by lysosome inhibitors. We also found that DDR1 is highly expressed in HCC tissues and that increased DDR1 expression predicts a shorter overall survival (OS) time. We additionally found that the expression of SLC1A5 was positively correlated with that of DDR1. Together, our data indicate that DDR1 acts as a tumor-promoting factor that can control HCC cell proliferation and cell cycle progression by stabilizing SLC1A5 in a lysosome-dependent way.

Conclusions

Our study reveals a new mechanism by which DDR1 plays a liver cancer-promoting role. We also found that DDR1 expression serves as an independent prognostic marker, and that DDR1 and SLC1A5 expression levels are positively correlated in clinical samples. Our findings provide a new perspective for understanding HCC development and offers new targets for the treatment and management of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig6

Similar content being viewed by others

Data Availability

All supporting data generated or analyzed during this study are available.

Abbreviations

DDR1:

Discoidin Domain Receptor 1

SLC1A5:

Solute Carrier Family 1 Member 5

mTORC1:

Mechanistic Target of Rapamycin Kinase Complex 1

4EBP1:

Eukaryotic Translation Initiation Factor 4E Binding Protein 1

RPS6K:

Ribosomal Protein S6 Kinase

CCK8:

Cell Counting Kit-8

CHX:

Cycloheximide

OS:

Overall survival

HCC:

Hepatocellular carcinoma

IHC:

Immunohistochemistry

OD:

Optical density

PCR:

Polymerase Chain Reaction

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    PubMed  Google Scholar 

  2. A. Villanueva, Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. J. Wu, S. Yang, K. Xu, C. Ding, Y. Zhou, X. Fu, Y. Li, M. Deng, C. Wang, X. Liu, L. Li, Patterns and trends of liver cancer incidence rates in eastern and southeastern asian countries (1983–2007) and predictions to 2030. Gastroenterology 154, 1719-1728.e5 (2018)

    Article  PubMed  Google Scholar 

  4. V. Mohan, A. Das, I. Sagi, Emerging roles of ECM remodeling processes in cancer. Semin. Cancer Biol. 62, 192–200 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. H. Rammal, C. Saby, K. Magnien, L. Van-Gulick, R. Garnotel, E. Buache, H. El Btaouri, P. Jeannesson, H. Morjani, Discoidin domain receptors: Potential actors and targets in cancer. Front. Pharmacol. 7, 55 (2016)

    PubMed  PubMed Central  Google Scholar 

  6. W. Vogel, Discoidin domain receptors: structural relations and functional implications. FASEB J. 13 (Suppl), S77-82 (1999)

    CAS  PubMed  Google Scholar 

  7. M. Nielsen, Estimation of noradrenaline and its major metabolites synthesized from [3H] tyrosine in the rat brain. J. Neurochem. 27, 493–500 (1976)

    Article  CAS  PubMed  Google Scholar 

  8. R. Abdulhussein, C. McFadden, P. Fuentes-Prior, W.F. Vogel, Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor. J. Biol. Chem. 279, 31462–31470 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. C. Ambrogio, G. Gómez-López, M. Falcone, A. Vidal, E. Nadal, N. Crosetto, R.B. Blasco, P.J. Fernández-Marcos, M. Sánchez-Céspedes, X. Ren, Z. Wang, K. Ding, M. Hidalgo, M. Serrano, A. Villanueva, D. Santamaría, M. Barbacid, Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat. Med. 22, 270–277 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. S. Moll, A. Desmoulière, M.J. Moeller, J.C. Pache, L. Badi, F. Arcadu, H. Richter, A. Satz, S. Uhles, A. Cavalli, F. Drawnel, L. Scapozza, M. Prunotto, DDR1 role in fibrosis and its pharmacological targeting. Biochim. Biophys. Acta Mol. Cell. Res. 1866, 118474 (2019)

    CAS  Google Scholar 

  11. V. Vella, M.L. Nicolosi, P. Cantafio, M. Massimino, R. Lappano, P. Vigneri, R. Ciuni, P. Gangemi, A. Morrione, R. Malaguarnera, A. Belfiore, DDR1 regulates thyroid cancer cell differentiation via IGF-2/IR-A autocrine signaling loop. Endocr. Relat. Cancer 26, 197–214 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. X. Zhong, W. Zhang, T. Sun, DDR1 promotes breast tumor growth by suppressing antitumor immunity. Oncol. Rep. 42, 2844–2854 (2019)

    CAS  PubMed  Google Scholar 

  13. M. Jeitany, C. Leroy, P. Tosti, M. Lafitte, J. Le Guet, V. Simon, D. Bonenfant, B. Robert, F. Grillet, C. Mollevi, S. El Messaoudi, A. Otandault, L. Canterel-Thouennon, M. Busson, A.R. Thierry, P. Martineau, J. Pannequin, S. Roche, A. Sirvent, Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Med. 10, e7918(2018)

  14. V.A. Heinzelmann-Schwarz, M. Gardiner-Garden, S.M. Henshall, J. Scurry, R.A. Scolyer, M.J. Davies, M. Heinzelmann, L.H. Kalish, A. Bali, J.G. Kench, L.S. Edwards, P.M. Vanden Bergh, N.F. Hacker, R.L. Sutherland, P.M. O’Brien, Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin. Cancer Res. 10, 4427–4436 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. H.L. Weiner, H. Huang, D. Zagzag, H. Boyce, R. Lichtenbaum, E.B. Ziff, Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors. Neurosurgery 47, 1400–1409 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. T. Nemoto, K. Ohashi, T. Akashi, J.D. Johnson, K. Hirokawa, Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology 65, 195–203 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. K. Valencia, C. Ormazábal, C. Zandueta, D. Luis-Ravelo, I. Antón, M.J. Pajares, J. Agorreta, L.M. Montuenga, S. Martínez-Canarias, B. Leitinger, F. Lecanda, Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin. Cancer Res. 18, 969–980 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. P.P. Ongusaha, J.I. Kim, L. Fang, T.W. Wong, G.D. Yancopoulos, S.A. Aaronson, S.W. Lee, p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 22, 1289–1301 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Yamanaka, T. Arao, N. Yajima, N. Tsuchiya, J. Homma, R. Tanaka, M. Sano, A. Oide, M. Sekijima, K. Nishio, Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 25, 5994–6002 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. N. Rudra-Ganguly, C. Lowe, M. Mattie, M.S. Chang, D. Satpayev, A. Verlinsky, Z. An, L. Hu, P. Yang, P. Challita-Eid, D.R. Stover, D.S. Pereira, Discoidin domain receptor 1 contributes to tumorigenesis through modulation of TGFBI expression. PloS One 9, e111515 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  21. H.G. Kim, S.Y. Hwang, S.A. Aaronson, A. Mandinova, S.W. Lee, DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J. Biol. Chem. 286, 17672–17681 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J.H. Lee, B. Poudel, H.H. Ki, S. Nepali, Y.M. Lee, J.S. Shin, D.K. Kim, Complement C1q stimulates the progression of hepatocellular tumor through the activation of discoidin domain receptor 1. Sci. Rep. 8, 4908 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Y. Deng, F. Zhao, L. Hui, X. Li, D. Zhang, W. Lin, Z. Chen, Y. Ning, Suppressing miR-199a-3p by promoter methylation contributes to tumor aggressiveness and cisplatin resistance of ovarian cancer through promoting DDR1 expression. J. Ovarian Res. 10, 50 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  24. L.Y. Chen, Z. Zhi, L. Wang, Y.Y. Zhao, M. Deng, Y.H. Liu, Y. Qin, M.M. Tian, Y. Liu, T. Shen, L.N. Sun, J.M. Li, NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J. Pathol. 248, 103–115 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Z.X. Jian, J. Sun, W. Chen, H.S. Jin, J.H. Zheng, Y.L. Wu, Involvement of discoidin domain 1 receptor in recurrence of hepatocellular carcinoma by genome-wide analysis. Med. Oncol. (Northwood, London, England) 29, 3077–3082 (2012)

    Article  CAS  Google Scholar 

  26. H.C. Yoo, S.J. Park, M. Nam, J. Kang, K. Kim, J.H. Yeo, J.K. Kim, Y. Heo, H.S. Lee, M.Y. Lee, C.W. Lee, J.S. Kang, Y.H. Kim, J. Lee, J. Choi, G.S. Hwang, S. Bang, J.M. Han, A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 31, 267-283.e12 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. C. Wang, J. Wu, Z. Wang, Z. Yang, Z. Li, H. Deng, L. Li, X. Peng, M. Feng, Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials 183, 77–92 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. M. van Geldermalsen, Q. Wang, R. Nagarajah, A.D. Marshall, A. Thoeng, D. Gao, W. Ritchie, Y. Feng, C.G. Bailey, N. Deng, K. Harvey, J.M. Beith, C.I. Selinger, S.A. O’Toole, J.E. Rasko, J. Holst, ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208 (2016)

    Article  PubMed  Google Scholar 

  29. K. Toda, G. Nishikawa, M. Iwamoto, Y. Itatani, R. Takahashi, Y. Sakai, K. Kawada, Clinical role of ASCT2 (SLC1A5) in KRAS-mutated colorectal cancer. Int. J. Mol. Sci. 18, 632 (2017)

  30. A. Csanadi, A. Oser, K. Aumann, V. Gumpp, J. Rawluk, U. Nestle, C. Kayser, S. Wiesemann, M. Werner, G. Kayser, Overexpression of SLC1a5 in lymph node metastases outperforms assessment in the primary as a negative prognosticator in non-small cell lung cancer. Pathology 50, 269–275 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. K. Bjersand, T. Seidal, I. Sundström-Poromaa, H. Åkerud, I. Skirnisdottir, The clinical and prognostic correlation of HRNPM and SLC1A5 in pathogenesis and prognosis in epithelial ovarian cancer. PloS One 12, e0179363 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Bröer, F. Rahimi, S. Bröer, Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J. Biol. Chem. 291, 13194–13205 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Z. Zhang, R. Liu, Y. Shuai, Y. Huang, R. Jin, X. Wang, J. Luo, ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br. J. Cancer 122, 82–93 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. M. Nakaya, Y. Xiao, X. Zhou, J.H. Chang, M. Chang, X. Cheng, M. Blonska, X. Lin, S.C. Sun, Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. P. Liu, M. Ge, J. Hu, X. Li, L. Che, K. Sun, L. Cheng, Y. Huang, M.G. Pilo, A. Cigliano, G.M. Pes, R.M. Pascale, S. Brozzetti, G. Vidili, A. Porcu, A. Cossu, G. Palmieri, M.C. Sini, S. Ribback, F. Dombrowski, J. Tao, D.F. Calvisi, L. Chen, X. Chen, A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology (Baltimore, Md.) 66, 167–181 (2017)

  36. P. Nicklin, P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, C. Wilson, V.E. Myer, J.P. MacKeigan, J.A. Porter, Y.K. Wang, L.C. Cantley, P.M. Finan, L.O. Murphy, Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Z.Y. Ding, G.N. Jin, H.F. Liang, W. Wang, W.X. Chen, P.K. Datta, M.Z. Zhang, B. Zhang, X.P. Chen, Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell. Signal. 25, 1981–1992 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Z.Y. Ding, G.N. Jin, W. Wang, W.X. Chen, Y.H. Wu, X. Ai, L. Chen, W.G. Zhang, H.F. Liang, A. Laurence, M.Z. Zhang, P.K. Datta, B. Zhang, X.P. Chen, Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology (Baltimore, Md.) 60, 1620–1636 (2014)

    Article  CAS  Google Scholar 

  39. M. Hassanein, M.D. Hoeksema, M. Shiota, J. Qian, B.K. Harris, H. Chen, J.E. Clark, W.E. Alborn, R. Eisenberg, P.P. Massion, SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 19, 560–570 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Rikova, A. Guo, Q. Zeng, A. Possemato, J. Yu, H. Haack, J. Nardone, K. Lee, C. Reeves, Y. Li, Y. Hu, Z. Tan, M. Stokes, L. Sullivan, J. Mitchell, R. Wetzel, J. Macneill, J.M. Ren, J. Yuan, C.E. Bakalarski, J. Villen, J.M. Kornhauser, B. Smith, D. Li, X. Zhou, S.P. Gygi, T.L. Gu, R.D. Polakiewicz, J. Rush, M.J. Comb, Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. S.T. Chou, H.Y. Peng, K.C. Mo, Y.M. Hsu, G.H. Wu, J.R. Hsiao, S.F. Lin, H.D. Wang, S.G. Shiah, MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1. J. Exp. Clin. Cancer Res. 38, 281 (2019)

    Article  Google Scholar 

  43. H. Jiang, N. Zhang, T. Tang, F. Feng, H. Sun, W. Qu, Target the human alanine/serine/cysteine transporter 2 (ASCT2): Achievement and future for novel cancer therapy. Pharmacol. Res. 158, 104844 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. M. Lafitte, A. Sirvent, S. Roche, Collagen kinase receptors as potential therapeutic targets in metastatic colon cancer. Front. Oncol. 10, 125 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  45. K. Ito, T. Suda, Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S.G. Kim, G.R. Hoffman, G. Poulogiannis, G.R. Buel, Y.J. Jang, K.W. Lee, B.Y. Kim, R.L. Erikson, L.C. Cantley, A.Y. Choo, J. Blenis, Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172–185 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. R.M. Perera, R. Zoncu, The Lysosome as a regulatory hub. Ann. Rev. Cell Dev. Biol. 32, 223–253 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work was supported by the National Natural Science Foundation of China (No. 81572427, 81874189, 81572855, 81874065, and 81874149), the National Basic Research Program of China (2020YFA0710700), the State Key Project on Infection Disease of China (No. 2018ZX10723204–003) and Tongji Hospital (HUST) Foundation for Excellent Young Scientist (No. 2020YQ05).

Funding

This work was supported by the National Natural Science Foundation of China (No. 81572427, 81874189, 81572855, 81874065, and 81874149), the National Basic Research Program of China (2020YFA0710700), the State Key Project on Infection Disease of China (No. 2018ZX10723204–003) and Tongji Hospital (HUST) Foundation for Excellent Young Scientist (No. 2020YQ05).

Author information

Authors and Affiliations

Authors

Contributions

Conception/Design: Bixiang Zhang and Wanguang Zhang; Provision of study material or patients: Yonglong Pan, Mengzhen Han and Xiaochao Zhang; Collection and/or assembly of data: Yi He, Chaoyi Yuan, Yixiao Xiong, Chenglong Zeng and Kan Lu; Data analysis and interpretation: Yonglong Pan, Mengzhen Han and Xiaochao Zhang;Manuscript writing: Yonglong Pan; Technical or material support: He Zhu, Xun Lu, Qiumeng Liu and Huifang Liang; Guiding opinions: Zhibin Liao, Zeyang Ding, Zhanguo Zhang and Xiaoping Chen; Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Wanguang Zhang or Bixiang Zhang.

Ethics declarations

Ethical Approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13402_2022_659_MOESM1_ESM.pdf

Supplementary file1 (PDF 979 kb) Fig1S: DDR1 promotes the proliferation, and tumorigenesis in HCC cells. a DDR1 expression level in hepatic and HCC cell lines was analyzed by Western blotting. b, c The expression level of DDR1 was detected by western blotting and qRT-PCR in DDR1 overexpression HCC cells. d, e The expression level of DDR1 was detected by western blotting and qRT-PCR in DDR1 knockdown HCC cells. f, g The effect of DDR1 overexpressing on HepG2 cell proliferation was assessed by the CCK8 assay(n=6) and colony-formation assay(n=3). h, i The effect of DDR1 knockdown on HLE cell proliferation was assessed by the CCK8 assay(n=6) and colony-formation assay(n=3). j The tumors formed by Sk-hep1-DDR1 and Sk-hep1-Vector cells were subjected to immunohistochemical staining for the proliferation marker Ki67. k The tumors formed by HLF-DDR1 shRNA and HLF-shNC shRNA cells were subjected to immunohistochemical staining for the proliferation marker Ki67.

13402_2022_659_MOESM2_ESM.pdf

Supplementary file2 (PDF 303 kb) Fig2S: DDR1 binds to SLC1A5 a Detection of SLC1A5 by mass spectrometry. b Selective genes from mass spectrometry analysis were co-immunoprecipitated with Myc-tagged DDR1.c 293T cells were transiently co-transfected with FLAG-tagged DDR1 and HA-tagged DDR1-K618A/R105A.

13402_2022_659_MOESM3_ESM.pdf

Supplementary file3 (PDF 567 kb) Fig3S: DDR1 stabilizes SLC1A5 protein expression through a kinase-independent mechanism. a, b The expression of SLC1A5 was detected by western blotting in indicated cells. c Immunoprecipitation of DDR1 from SK-hep1-vector and SK-hep1-DDR1 cell lysates pre-incubated with (+) or without (-) collagen I for 3 hours. The blots were probed with anti-phosphotyrosine antibody and anti-DDR1 antibody. Immunoprecipitation of DDR1 from HLF-scramble, HLF- shDDR1-1 and HLF-shDDR1-2 cell lysates pre-incubated with (+) or without (-) collagen I for 3 hours. The blots were probed with anti-phosphotyrosine antibody and anti-DDR1 antibody. d The expression of SLC1A5 was detected by western blotting in indicated cells with or without Collagen I stimulation(10ug/ml,3 hours).e HLE cells were pretreated with or without Collagen I (10ug/ml,3 hours) alone or in combination with ponatinib(100nM) and imatinib(100nM). The expression of SLC1A5 was detected by western blotting. f, g The expression of SLC1A5 was detected by western blotting in indicated cells with or without MG132(20mmol/L,6h). h The expression of p-mTORC1, mTORC1, p-S6K, S6K, p-4EBP1 and 4EBP1 were detected by western blotting in indicated cells.

13402_2022_659_MOESM4_ESM.pdf

Supplementary file4 (PDF 347 kb) Fig4S: SLC1A5 promotes cellular proliferation, and mTORC1 signaling pathway in HCC cells a SLC1A5 expression level in hepatic and HCC cell lines was analyzed by Western blotting. The expression level of SLC1A5 was detected by western blotting in SLC1A5 overexpression and knockdown HCC cells. b, c The protein level of SLC1A5 was examined in 62 pairs of HCC tumor tissues (T) and corresponding peritumor tissues (N) by western blot using anti-SLC1A5 antibody, where GAPDH was used as a loading control. Representative WB images were presented.

Supplementary file5 (DOCX 19 kb)

Supplementary file6 (DOCX 15 kb)

Supplementary file7 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Han, M., Zhang, X. et al. Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway. Cell Oncol. 45, 163–178 (2022). https://doi.org/10.1007/s13402-022-00659-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00659-8

Keywords

Navigation