Skip to main content
Log in

Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report

  • Report
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues.

Methods

We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry.

Results

No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR.

Conclusion

In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ACC:

adenoid cystic carcinoma

AMPK:

AMP-activated kinase

CexPA:

carcinoma ex pleomorphic adenoma

LKB1:

liver kinase B1

MEC:

mucoepidermoid carcinoma

mTOR:

mammalian target of rapamycin

PA:

pleomorphic adenoma

PDK1:

phosphoinositide-dependent kinase 1

SDC:

salivary duct carcinoma

WT:

Warthin tumor

References

  1. J. Spicer, S. Rayter, N. Young, R. Elliott, A. Ashworth, D. Smith, Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 22, 4752–4756 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. D. P. Smith, S. I. Rayter, C. Niederlander, J. Spicer, C. M. Jones, A. Ashworth, LIP1, A cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. Hum. Mol. Genet. 10, 2869–2877 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. O. Ossipova, N. Bardeesy, R. A. DePinho, J. B. Green, LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nat. Cell Biol. 5, 889–894 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. D. A. Guertin, D. M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. C. Boehlke, F. Kotsis, V. Patel, S. Braeg, H. Voelker, S. Bredt, T. Beyer, H. Janusch, C. Hamann, M. Godel, K. Muller, M. Herbst, M. Hornung, M. Doerken, M. Kottgen, R. Nitschke, P. Igarashi, G. Walz, E. W. Kuehn, Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. Mehenni, N. Lin-Marq, K. Buchet-Poyau, A. Reymond, M. A. Collart, D. Picard, S. E. Antonarakis, LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. Hum. Mol. Genet. 14, 2209–2219 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. P. Y. Zeng, S. L. Berger, LKB1 is recruited to the p21/WAF1 promoter by p53 to mediate transcriptional activation. Cancer Res. 66, 10701–10708 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. K. Goetze, C. G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U. G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. 38, 377–385 (2015)

    Article  CAS  Google Scholar 

  9. H. R. Oh, C. H. An, N. J. Yoo, S. H. Lee, Somatic mutations of amino acid metabolism-related genes in gastric and colorectal cancers and their regional heterogeneity--a short report. Cell. Oncol. 37, 455–461 (2014)

    Article  CAS  Google Scholar 

  10. M. Cargnello, J. Tcherkezian, P. P. Roux, The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis 30, 169–176 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. K. Inoki, T. Zhu, K. L. Guan, TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., DePinho, R. A., and Cantley, L. C. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 6, 91–99 (2004)

  13. D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, R. J. Shaw, AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. M. Arsham, J. J. Howell, M. C. Simon, A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J. Biol. Chem. 278, 29655–29660 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. N. Kimura, C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino, K. Hara, B. E. Kemp, L. A. Witters, O. Mimura, K. Yonezawa, A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 8, 65–79 (2003)

  16. D. B. Shackelford, D. S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C. L. Wu, D. R. Vera, R. J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A., and Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004)

  18. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 310, 1642–1646 (2005)

  19. B. Faubert, E. E. Vincent, M. C. Poffenberger, R. G. Jones, The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 356, 165–170 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth, A. Loukola, G. Bignell, W. Warren, M. Aminoff, P. Hoglund, H. Jarvinen, P. Kristo, K. Pelin, M. Ridanpaa, R. Salovaara, T. Toro, W. Bodmer, S. Olschwang, A. S. Olsen, M. R. Stratton, A. de la Chapelle, L. A. Aaltonen, A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. D. E. Jenne, H. Reimann, J. Nezu, W. Friedel, S. Loff, R. Jeschke, O. Muller, W. Back, M. Zimmer, Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet. 18, 38–43 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. H. Jeghers, K. V. Mc, K. H. Katz, Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits. a syndrome of diagnostic significance. N. Engl. J. Med. 241, 1031–1036 (1949)

    Article  CAS  PubMed  Google Scholar 

  23. F. M. Giardiello, J. D. Brensinger, A. C. Tersmette, S. N. Goodman, G. M. Petersen, S. V. Booker, M. Cruz-Correa, J. A. Offerhaus, Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119, 1447–1453 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. M. Sanchez-Cespedes, A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 26, 7825–7832 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. K. Vaahtomeri, T. P. Makela, Molecular mechanisms of tumor suppression by LKB1. FEBS Lett. 585, 944–951 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. B. Gao, Y. Sun, J. Zhang, Y. Ren, R. Fang, X. Han, L. Shen, X. Y. Liu, W. Pao, H. Chen, H. Ji, Spectrum of LKB1, EGFR, and KRAS mutations in chinese lung adenocarcinomas. J Thorac Oncol. 5, 1130–1135 (2010)

  27. H. Ji, M. R. Ramsey, D. N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M. C. Wu, T. Shimamura, S. A. Perera, M. C. Liang, D. Cai, G. N. Naumov, L. Bao, C. M. Contreras, D. Li, L. Chen, J. Krishnamurthy, J. Koivunen, L. R. Chirieac, R. F. Padera, R. T. Bronson, N. I. Lindeman, D. C. Christiani, X. Lin, G. I. Shapiro, P. A. Janne, B. E. Johnson, M. Meyerson, D. J. Kwiatkowski, D. H. Castrillon, N. Bardeesy, N. E. Sharpless, K. K. Wong, LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. J. P. Koivunen, J. Kim, J. Lee, A. M. Rogers, J. O. Park, X. Zhao, K. Naoki, I. Okamoto, K. Nakagawa, B. Y. Yeap, M. Meyerson, K. K. Wong, W. G. Richards, D. J. Sugarbaker, B. E. Johnson, P. A. Janne, Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer 99, 245–252 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Sanchez-Cespedes, P. Parrella, M. Esteller, S. Nomoto, B. Trink, J. M. Engles, W. H. Westra, J. G. Herman, D. Sidransky, Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002)

    CAS  PubMed  Google Scholar 

  30. S. N. Wingo, T. D. Gallardo, E. A. Akbay, M. C. Liang, C. M. Contreras, T. Boren, T. Shimamura, D. S. Miller, N. E. Sharpless, N. Bardeesy, D. J. Kwiatkowski, J. O. Schorge, K. K. Wong, D. H. Castrillon, Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4, e5137 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  31. C. M. Contreras, S. Gurumurthy, J. M. Haynie, L. J. Shirley, E. A. Akbay, S. N. Wingo, J. O. Schorge, R. R. Broaddus, K. K. Wong, N. Bardeesy, D. H. Castrillon, Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759–766 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. A. Rowan, M. Churchman, R. Jefferey, A. Hanby, R. Poulsom, I. Tomlinson, In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J. Pathol. 192, 203–206 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. I. P. Ribeiro, F. Marques, F. Caramelo, J. Pereira, M. Patricio, H. Prazeres, J. Ferrao, M. J. Juliao, M. Castelo-Branco, J. B. de Melo, I. P. Baptista, I. M. Carreira, Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell. Oncol. 37, 29–39 (2014)

    Article  CAS  Google Scholar 

  34. T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)

    Article  CAS  Google Scholar 

  35. C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W. B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)

    Article  CAS  Google Scholar 

  36. L. Thompson, World Health Organization classification of tumours: pathology and genetics of head and neck tumours. Ear Nose Throat J. 85, 74 (2006)

    PubMed  Google Scholar 

  37. S. Kato, S. K. Elkin, M. Schwaederle, B. N. Tomson, T. Helsten, J. L. Carter, R. Kurzrock, Genomic landscape of salivary gland tumors. Oncotarget 28, 25631–25645 (2015)

    Article  Google Scholar 

  38. T. Ettl, S. Schwarz-Furlan, F. Haubner, S. Muller, J. Zenk, M. Gosau, T. E. Reichert, K. Zeitler, The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation. Oral Oncol. 48, 822–830 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. N. M. Ghahhari, H. M. Ghahhari, M. Kadivar, Could a possible crosstalk between AMPK and TGF-beta signaling pathways be a key player in benign and malignant salivary gland tumors? Onkologie 35, 770–774 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. A. Sen, Z. Nagy-Zsver-Vadas, M. P. Krahn, Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J. Cell Biol. 199, 685–698 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Boudeau, A. Kieloch, D. R. Alessi, A. Stella, G. Guanti, N. Resta, Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers syndrome patients. Hum. Mutat. 21, 172 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. C. Forcet, S. Etienne-Manneville, H. Gaude, L. Fournier, S. Debilly, M. Salmi, A. Baas, S. Olschwang, H. Clevers, M. Billaud, Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. Hum. Mol. Genet. 14, 1283–1292 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. A. F. Baas, J. Boudeau, G. P. Sapkota, L. Smit, R. Medema, N. A. Morrice, D. R. Alessi, H. C. Clevers, Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 22, 3062–3072 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Boudeau, A. F. Baas, M. Deak, N. A. Morrice, A. Kieloch, M. Schutkowski, A. R. Prescott, H. C. Clevers, D. R. Alessi, MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 22, 5102–5114 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dorfman, J., and Macara, I. G. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell. 19, 1614–1626 (2008)

  46. Y. Nakada, T. G. Stewart, C. G. Pena, S. Zhang, N. Zhao, N. Bardeesy, N. E. Sharpless, K. K. Wong, D. N. Hayes, D. H. Castrillon, The LKB1 tumor suppressor as a biomarker in mouse and human tissues. PLoS One 8, e73449 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. Royer, X. Lu, Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ. 18, 1470–1477 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aure, M. H., Arany, S., and Ovitt, C. E. Salivary Glands: Stem Cells, Self-duplication, or Both? J. Dent. Res. 94, (11), 1502–1507(2015). doi:10.1177/0022034515599770

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Krahn.

Ethics declarations

Conflicts of interests

The authors have no conflicts of interest to declare.

Electronic supplementary material

Supplemental Figure 1

Activation of Akt, AMPK and mTOR in Warthin’s tumors. A-B. LKB1 expression is not decreased in Warthin’s tumors and exhibits a regular cortical localization compared to normal tissue. C-F. AMPK expression and activation is increased in Warthin’s tumors. G-H. The PI3K-pathway is slightly activated, resulting in phosphorylation of Akt (pAkt). I-J. pS6 K accumulates in the nucleus and in the cytoplasm. K-L. Control staining. Scale bars: 200 μm in A, C, E, G, I, K and 50 μm in B, D, F, H, J and L. (GIF 872 kb)

High resolution image (TIFF 8308 kb)

Supplemental Figure 2

Activation of Akt and AMPK in pleomorphic adenomas. A-B. Overall LKB1 expression is not decreased in pleomorphic adenomas, but shows reduced membranous staining compared to normal tissue. C-F. AMPK expression and activation is increased in pleomorphic adenomas. G-H. The PI3K-pathway is activated, resulting in phosphorylation of Akt (pAkt). I-J. pS6 K is strongly detectable in the nucleus but not in the cytoplasm of pleomorphic adenomas. K-L. Control staining. Scale bars: 200 μm in A, C, E, G, I, K and 50 μm in B, D, F, H, J and L. (GIF 965 kb)

High resolution image (TIFF 9938 kb)

Supplemental Figure 3

Activation of Akt and AMPK in mucoepidermoid carcinomas. A-B. LKB1 expression is similar to normal tissue and shows moderate cytoplasmic and membranous staining. C-F. AMPK expression and activation is increased in mucoepidermoid carcinomas. G-H. The PI3K-pathway is activated, resulting in phosphorylation of Akt (pAkt). I-J. pS6 K is strongly detectable in the nucleus; half of the tumors also show positive cytoplasmic pS6 K staining. K-L. Control staining. Scale bars: 200 μm in A, C, E, G, I, K and 50 μm in B, D, F, H, J and L. (GIF 929 kb)

High resolution image (TIFF 9200 kb)

Supplemental Figure 4

Activation of AMPK in salivary duct carcinomas. A-B. LKB1 expression is similar to normal tissue and shows moderate cytoplasmic and weak positive membranous staining. C-F. Salivary duct carcinomas show moderate cytoplasmic (p)AMPK expression, but reduced membranous staining of pAMPK. G-H. The PI3K-pathway is activated in roughly half of the tumors, resulting in phosphorylation of Akt (pAkt). I-J. Nuclear pS6 K expression is weakly or moderately positive in salivary duct carcinomas; one third of the tumors show weak positive cytoplasmic staining (not shown). K-L. Control staining. Scale bars: 200 μm in A, C, E, G, I, K and 50 μm in B, D, F, H, J and L. (GIF 965 kb)

High resolution image (TIFF 9040 kb)

Supplemental Figure 5

Activation of AMPK and decrease of pS6 K in adenoid-cystic carcinomas. A-B. Cytoplasmic LKB1 expression is decreased in some tumors and membranous LKB1 expression is reduced in comparison to normal tissue. C-F. Cytoplasmic AMPK expression and activation is increased in adenoid-cystic carcinomas, whereas membranous (p)AMPK staining cannot be detected. G-H. The PI3K-pathway is activated in half of the tumors, resulting in phosphorylation of Akt (pAkt). I-J. Adenoid-cystic carcinomas show reduced nuclear and cytoplasmic pS6 K expression. K-L. Control staining. Scale bars: 200 μm in A, C, E, G, I, K and 50 μm in B, D, F, H, J and L. (GIF 954 kb)

High resolution image (TIFF 9607 kb)

Supplemental Table 1

Scoring of staining intensity of LKB1, (p)AMPK, pAkt and pS6 K in different tumor types. The percentage of tissues showing negative (0), weak (+), moderate (++) or strong (+++) staining of the indicated proteins is depicted for each type of tumor as well as for healthy parotis tissue. WT, Warthin tumor; PA, pleomorphic adenoma; MEC, mucoepidermoid carcinoma; SDC, salivary duct carcinoma; CexPA, carcinoma ex pleomorphic adenoma; ACC, adenoid cystic carcinoma. (GIF 116 kb)

High resolution image (TIFF 831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cidlinsky, N., Dogliotti, G., Pukrop, T. et al. Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report. Cell Oncol. 39, 389–396 (2016). https://doi.org/10.1007/s13402-016-0290-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0290-8

Keywords

Navigation