Skip to main content
Log in

Thermochemical treatment of mixed mandarin peel and algae via microwave and H3PO4 activation: process optimization and adsorption mechanism for methylene blue dye

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Herein, blended mandarin (Citrus reticulata) peel (MP) and algae (AG) biomass were thermochemically treated (TCTMPAG) to yield a cost-effective and renewable adsorbent for removal of methylene blue (MB), a known toxic cationic dye. The preparation included microwave irradiation, in conjunction with H3PO4 activation at 800 W for 15 min in a nitrogen atmosphere. The adsorption characteristics of TCTMPAG were studied by assessing its capacity to remove methylene blue (MB) dye from aqueous media. The Box-Behnken design (BBD) was used to optimize key adsorption factors, namely A: TCTMPAG dosage (0.02–0.12 g/0.1 L), B: pH (4–10), and C: contact period (30–420) min. The BBD model determined that the highest elimination of MB (98.4%) occurred for a TCTMPAG dosage of 0.12 g/0.1L, pH 10, and a contact time of 225 min. The MB dye adsorption rate profile conformed to a pseudo-second-order (PSO) model, while the Langmuir and Temkin model adequately represented the equilibrium adsorption profile (R2 = 0.97). The highest adsorption capacity (qmax) of TCTMPAG for MB dye was determined to be 48.5 mg/g. Various contributions to the adsorption mechanism include various contributions such as electrostatic forces, H-bonding, pore filling, and π-π stacking onto the TCTMPAG adsorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

 Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Cigeroglu Z, El Messaoudi N, Şenol ZM, Baskan G, Georgin J, Gubernat S (2024) Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: a review. Mater 26:100735. https://doi.org/10.1016/j.mtsust.2024.100735

    Article  Google Scholar 

  2. Wang X, Zhang P, Xu F, Sun B, Hong G, Bao L (2022) Adsorption of methylene blue on azo dye wastewater by molybdenum disulfide nanomaterials. Sustainability 14(13):7585. https://doi.org/10.3390/su14137585

    Article  Google Scholar 

  3. Yu YQ, Liu SH, Pei Y, Luo XG (2021) Growing Pd NPs on cellulose microspheres via in-situ reduction for catalytic decolorization of methylene blue. Int J Biol Macromol 166:1419–1428

    Article  Google Scholar 

  4. Alvarenga G, Lima JP, Goszczynski A, Rosa CH (2020) Methylene blue adsorption by timbaúva (Enterolobium contortisiliquum)- derived materials. Environ Sci Pollut Res 27:27893–27903

    Article  Google Scholar 

  5. Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S (2022) A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere 306:135566. https://doi.org/10.1016/j.chemosphere.2022.135566

    Article  Google Scholar 

  6. Sultana M, Rownok MH, Sabrin M, Rahaman MH, Alam SN (2022) A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean Eng Technol 6:100382. https://doi.org/10.1016/j.clet.2021.100382

    Article  Google Scholar 

  7. Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R (2022) Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 8:09930. https://doi.org/10.1016/j.heliyon.2022.e09930

    Article  Google Scholar 

  8. Zaharia MM, Vasiliu AL, Trofin MA, Pamfil D, Bucatariu F, Racovita S, Mihai M (2021) Design of multifunctional composite materials based on acrylic ion exchangers and CaCO3 as sorbents for small organic molecules. React Funct Polym 166:104997–105012

    Article  Google Scholar 

  9. Raninga M, Mudgal A, Patel VK, Patel J, Sinha MK (2023) Modification of activated carbon-based adsorbent for removal of industrial dyes and heavy metals: a review. Materials Today: Proceedings 77:286–294. https://doi.org/10.1016/j.matpr.2022.11.358

    Article  Google Scholar 

  10. Arslan DŞ, Ertap H, Şenol ZM, El Messaoudi N, Mehmeti V (2023) Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution. J Environ Polym Degrad 2:1–5. https://doi.org/10.1007/s10924-023-03004-8

    Article  Google Scholar 

  11. de Toledo WDMC, Pinheiro RA, Trava-Airoldi VJ, Corat EJ (2022) Development of boron-doped diamond (BDD) deposited on carbon nanotubes (CNT) to form BDD/CNT structures relevant for electrochemical degradation. Diamond Relat Mater 127:109159–1109170

    Article  Google Scholar 

  12. Ihaddaden S, Aberkane D, Boukerroui A, Robert D (2022) Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J Water Process Eng 49:102952–102964

    Article  Google Scholar 

  13. Ruthiraan M, Mubarak NM, Abdullah EC, Khalid M, Nizamuddin S, Walvekar R, Karri RR (2019) An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater. Magnetic Nanostruct. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_8

  14. Khan FSA, Mubarak NM, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Karri RR (2020) Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ Sci Pollut Res 27(19):24342–24356

    Article  Google Scholar 

  15. Saghi MH, Qasemi M, Alidadi H, Alahabadi A, Rastegar A, Kowsari MH, Shams M (2020) Vanadium oxide nanoparticles for methylene blue water remediation: exploring the effect of physicochemical parameters by process modeling. J Mol Liq 318:114046. https://doi.org/10.1016/j.molliq.2020.114046

    Article  Google Scholar 

  16. Jawad AH, Sahu UK, Mastuli MS, ALOthman ZA, Wilson LD, (2022) Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Convers Biomass Convers Biorefinery 1:15. https://doi.org/10.1007/s13399-022-02423-2

    Article  Google Scholar 

  17. Mustafa I (2019) Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J 144:397–402. https://doi.org/10.1016/j.microc.2018.09.032

    Article  Google Scholar 

  18. He K, Zeng G, Chen A, Huang Z, Peng M, Huang T, Chen G (2019) Graphene hybridized polydopamine-kaolin composite as effective adsorbent for methylene blue removal. Compos B Eng 161:141–149. https://doi.org/10.1016/j.compositesb.2018.10.063

    Article  Google Scholar 

  19. Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Nguyen XP (2022) Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: an update of recent trends. Chemosphere 302:134825–134848

    Article  Google Scholar 

  20. Arumugasamy SK, Chellasamy G, Sekar S, Lee S, Govindaraju S, Yun K (2022) TriMOF synergized on the surface of activated carbon produced from pineapple leaves for the environmental pollutant reduction and oxygen evolution process. Chemosphere 286:131893. https://doi.org/10.1016/j.chemosphere.2021.131893

    Article  Google Scholar 

  21. El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Lacherai A, Chegini ZG, Bouich A (2021) Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. PRT 51(5):477–488. https://doi.org/10.1108/PRT-04-2021-0045

    Article  Google Scholar 

  22. Jimoh OS, Ibrahim AO, Bello OS (2022) Metformin adsorption onto activated carbon prepared by acid activation and carbonization of orange peel. Int J Phyto 25(2):125–136. https://doi.org/10.1080/15226514.2022.2064815

    Article  Google Scholar 

  23. Karri RR, Sahu JN, Meikap BC (2020) Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. Ind Crops Prod 143:111927

    Article  Google Scholar 

  24. Tripathy A, Mohanty S, Nayak SK, Ramadoss A (2021) Renewable banana-peel-derived activated carbon as an inexpensive and efficient electrode material showing fascinating supercapacitive performance. J Environ Chem Eng 9(6):106398. https://doi.org/10.1016/j.jece.2021.106398

    Article  Google Scholar 

  25. Saadi W, Rodríguez-Sánchez S, Ruiz B, Najar-Souissi S, Ouederni A, Fuente E (2022) From pomegranate peels waste to one-step alkaline carbonate activated carbons. Prospect as sustainable adsorbent for the renewable energy production. J Environ Chem Eng 10(1):107010. https://doi.org/10.1016/j.jece.2021.107010

    Article  Google Scholar 

  26. Herrera-Barros A, Bitar-Castro N, Villabona-Ortíz A, Tejada-Tovar C, Gonzalez-Delgado AD (2020) Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustain Chem Pharm 17:100299

    Article  Google Scholar 

  27. Alamze M, Madiha Tullah M, Ihsanullah SA, Khan B, Setzer WN, Al-Zaqri N, Ibrahim MNM (2022) Kinetic, thermodynamic and adsorption isotherm studies of detoxification of Eriochrome Black T dye from wastewater by native and washed garlic peel. Water 14:3713

    Article  Google Scholar 

  28. Eleryan A, Yılmaz M, El-Nemr MA, Ragab S, Helal M, Hassaan MA, Nemr AE (2022) Mandarin Biochar-TETA (MBT) prepared from Citrus reticulata peels for adsorption of Acid Yellow 11 dye from water. Sci Rep 12:17797

    Article  Google Scholar 

  29. Anticona M, Blesa J, Lopez-Malo D, Frigola A, Esteve MJ (2021) Effects of ultrasound-assisted extraction on physicochemical properties, bioactive compounds, and antioxidant capacity for the valorization of hybrid Mandarin peels. Food Biosci 42:101185

    Article  Google Scholar 

  30. Mahmoud ME, Mohamed AK (2020) Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Int J Biol Macromol 164:920

    Article  Google Scholar 

  31. Pavan FA, Lima IS, Lima EC, Airoldi C, Gushikem Y (2006) Use of Ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions. J Hazard Chem Mater 137:527–533

    Article  Google Scholar 

  32. Koyuncu F, Güzelb F, Saygılı H (2018) Role of optimization parameters in the production of nanoporous carbon from mandarin shells by microwave-assisted chemical activation and utilization as dye adsorbent. Adv Powder Technol 29:2108

    Article  Google Scholar 

  33. Besegatto SV, Martins ML, Lopes TJ, da Silva A (2021) Multivariated calibration as a tool for resolution of color from mandarin peel and dyes in aqueous solution for bio-adsorption studies. J Environ Chem Eng 9:104605

    Article  Google Scholar 

  34. Park H, Kim J, Lee YG, Chon K (2021) Enhanced adsorptive removal of dyes using mandarin peel biochars via chemical activation with NH4Cl and ZnCl2. Water 13:1495

    Article  Google Scholar 

  35. Eldeeb TM, Aigbe UO, Ukhurebor KE, Onyancha RB, El-Nemr MA, Hassaan MA, Osibote OA, Ragab S, Okundaye B, Balogun VA (2024) Biosorption of acid brown 14 dye to mandarin-CO-TETA derived from mandarin peels. Bioref 14:5053–5073. https://doi.org/10.1007/s13399-022-02664-1

  36. Sun W, Sun W, Wang Y (2019) Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochim Acta Part A: Molecul Biomol Spect 223:117347

    Article  Google Scholar 

  37. El Messaoudi N, Ciğeroğlu Z, Şenol ZM, Kazan-Kaya ES, Fernine Y, Gubernat S, Lopicic Z (2024) Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review. Biomass Conversion and Biorefinery 6:1–22. https://doi.org/10.1007/s13399-023-05264-9

    Article  Google Scholar 

  38. Almomani F, Bohsale RR (2021) Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: application of isotherm, kinetic models and process optimization. Sci Total Environ 755:142654

    Article  Google Scholar 

  39. Sarojini G, Babu SV, Rajamohan N, Rajasimman M, Pugazhendhi A (2022) Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue–characterization, parametric and kinetic studies. Environ Pollut 292:118376

    Article  Google Scholar 

  40. Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Nguyen XP (2022) Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: an update of recent trends. Chemosphere 302:134825. https://doi.org/10.1016/j.chemosphere.2022.134825

    Article  Google Scholar 

  41. Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Lam SS (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chem Eng J 389:124401

    Article  Google Scholar 

  42. Sirajo L, MaZ Z (2022) Adsorption of water pollutants using H3PO4-activated lignocellulosic agricultural waste: a mini review. Toxin Reviews 42(1):349–361. https://doi.org/10.1080/15569543.2022.2062775

    Article  Google Scholar 

  43. Genli N, Kutluay S, Baytar O, . Şahi̇N Ö, (2021) Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization. Int J Phyto 24(1):88–100. https://doi.org/10.1080/15226514.2021.1926911

    Article  Google Scholar 

  44. Uçar S, Erdem M, Tay T, Karagöz S (2014) Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Tech and Env Pol 17(3):747–756. https://doi.org/10.1007/s10098-014-0830-8

    Article  Google Scholar 

  45. Al-Qaessi F (2010) Production of activated carbon from date stones by using zinc chloride. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 32(10):917–930. https://doi.org/10.1080/15567030903493062

    Article  Google Scholar 

  46. Wong S, Yac’cob NaN, Hassan O, Inuwa IM (2018) From pollutant to solution of wastewater pollution: synthesis of activated carbon from textile sludge for dye adsorption. Chinese J Chem Eng 26(4):870–878. https://doi.org/10.1016/j.cjche.2017.07.015

    Article  Google Scholar 

  47. Chiang CH, Chen J, Lin JH (2020) Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. J Environ Chem Eng 8(4):103929. https://doi.org/10.1016/j.jece.2020.103929

    Article  Google Scholar 

  48. Jawad AH, Saber SEM, Abdulhameed AS, Reghioua A, ALOthman ZA, Wilson LD (2022) Mesoporous-activated carbon from mangosteen (Garcinia mangostana) peels by H3PO4 assisted microwave: optimization, characterization, and adsorption mechanism for methylene blue dye removal. Diamond Relat Mater 129:109389. https://doi.org/10.1016/j.diamond.2022.109389

  49. Farki NNANLT, Abdulhameed AS, Surip SN, Alothman ZA, Jawad AH (2023) Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H3PO4 -assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. Int J Phyto 25(12):1567–1578. https://doi.org/10.1080/15226514.2023.2175780

    Article  Google Scholar 

  50. Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH (2016) Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magnet Magnet Mater 404:179–189

    Article  Google Scholar 

  51. Hu L, Peng Y, Wu F, Peng S, Li J, Liu Z (2017) Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene. J Taiwan Institute Chem Eng 80:399–405. https://doi.org/10.1016/j.jtice.2017.07.029

    Article  Google Scholar 

  52. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  53. Abdul Khalil HPS, Jawaid M, Firoozian P, Rashid U, Islam A, Akil HM (2013) Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization. J Biobased Mater Bioenergy 7(6):708–714

    Article  Google Scholar 

  54. Bisht D, Sinha S, Nigam S, Bisaria K, Mehrotra T, Singh R (2021) Adsorptive decontamination of paper mill effluent by nano fly ash: response surface methodology, adsorption isotherm and reusability studies. Water Sci Technol 83(7):1662–1676

    Article  Google Scholar 

  55. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surface Sci 320:674–680. https://doi.org/10.1016/j.apsusc.2014.08.178

    Article  Google Scholar 

  56. Köseoğlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818

    Article  Google Scholar 

  57. Masoudian N, Rajabi M, Ghaedi M (2019) Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of Congo red and phenol red dyes from wastewaters. Polyhedron 173:114105–114114

    Article  Google Scholar 

  58. Kutluay S, Temel F (2021) Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A: Physicochem Eng Asp 609:125848

    Article  Google Scholar 

  59. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B (2022) Development of new magnetic adsorbent of walnut shell ash/starch/Fe3O4 for effective copper ions removal: treatment of groundwater samples. Chemosphere 296:133978

    Article  Google Scholar 

  60. Ashrafi SD, Safari GH, Sharafi K, Kamani H, Jaafari J (2021) Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: modeling, kinetics, equilibriums and reusability studies. Int J Biol Macromol 185:66–76

    Article  Google Scholar 

  61. Shukla SK, Pandey S, Saha S, Singh HR, Mishra PK, Kumar S, Jha SK (2021) Removal of crystal violet by Cu-chitosan nano-biocomposite particles using Box-Behnken design. J Environ Chem Eng 9(5):105847

    Article  Google Scholar 

  62. Jayan N, Laxmi DBM, Akbar ST (2021) Central composite design for adsorption of Pb(II) and Zn(II) metals on PKM-2 Moringa oleifera leaves. ACS Omega 6(39):25277–25298. https://doi.org/10.1021/acsomega.1c03069

    Article  Google Scholar 

  63. Rose PK, Poonia V, Kumar R, Kataria N, Sharma P, Lamba J, Bhattacharya P (2023) Congo red dye removal using modified banana leaves: adsorption equilibrium, kinetics, and reusability analysis. Groundw Sustain Dev 23:101005. https://doi.org/10.1016/j.gsd.2023.101005

    Article  Google Scholar 

  64. Amin MT, Alazba AA, Shafiq M (2021) Successful application of eucalyptus camdulensis biochar in the batch adsorption of crystal violet and methylene blue dyes from aqueous solution. Sustain 13(7):3600

    Article  Google Scholar 

  65. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Vet Akad Handl 24:1–39

    Google Scholar 

  66. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  Google Scholar 

  67. Theamwong N, Intarabumrung W, Sangon S, Aintharabunya S, Ngernyen Y, Hunt AJ, Supanchaiyamat N (2021) Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresour Technol 341:125832–125842

    Article  Google Scholar 

  68. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  69. Frenudlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    Google Scholar 

  70. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts, Acta physiochim. URSS 12:327–356

    Google Scholar 

  71. Jin Y, Liu F, Li Y, Du Q, Song F, Chen B, Chen K, Zhang Y, Wang M, Sun Y, Zhao S, Jing Z, Pi X, Wang YQ, Wang D (2023) Efficient adsorption of azo anionic dye Congo Red by micro-nano metal-organic framework MIL-68(Fe) and MIL-68(Fe)/chitosan composite sponge: preparation, characterization and adsorption performance. Int J Biol Macromol 252:126198. https://doi.org/10.1016/j.ijbiomac.2023.126198

    Article  Google Scholar 

  72. Francis AO, Kevin OS, Zaini MAA (2023) Vitex doniana seed activated carbon for methylene blue adsorption: equilibrium and kinetics. Int J Phytoremediation 25(12):1625–1635. https://doi.org/10.1080/15226514.2023.2179013

  73. Durrani W, Nasrullah A, Khan A, Fagieh TM, Bakhsh EM, Akhtar K, Khan SB, Din IU, Khan MS, Bokhari A (2022) Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere 302:134793. https://doi.org/10.1016/j.chemosphere.2022.134793

    Article  Google Scholar 

  74. Yadav S, Dhakate SR, Singh BP (2022) Carbon nanotube incorporated eucalyptus-derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresour Technol 344(Pt B):126231. https://doi.org/10.1016/j.biortech.2021.126231

    Article  Google Scholar 

  75. Tuli F, Hossain A, Kibria AF, Tareq ARM, Mamun S, Ullah AKMA (2020) Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: a study of adsorption isotherm and kinetics. Environ Nanotechnol Monit Manag 14:100354. https://doi.org/10.1016/j.enmm.2020.100354

    Article  Google Scholar 

  76. Gupta S, Vishesh Y, Sarvshrestha N, Bhardwaj AS, Kumar A, Topare NS, Raut-Jadhav S, Bokil SA, Asiri AM (2022) Adsorption isotherm studies of methylene blue using activated carbon of waste fruit peel as an adsorbent. Mater Today Proc 57:1500–1508. https://doi.org/10.1016/j.matpr.2021.12.044

    Article  Google Scholar 

  77. Gao X, Xu D, Gao Y, Chen G, Zhai R, Huang X, Liu G (2021) Mussel-inspired triple bionic adsorbent: facile preparation of layered double hydroxide@ polydopamine@ metal-polyphenol networks and their selective adsorption of dyes in single and binary systems. J Hazard Mater 420:126609

    Article  Google Scholar 

  78. Al-musawi HA, Al-Mammar DE (2021) Adsorption of naphthol green B dye on to Ca-montmorillonite and nano-composite Ca-montmorillonite clay. Annals Romanian Soc Cell Biol 25(5):2797–2810

    Google Scholar 

  79. Ahmad R, Ansari K (2022) Fabrication of alginate@ silver nanoparticles (Alg@AgNPs) bionanocomposite for the sequestration of crystal violet dye from aqueous solution. Int J Biol Macromol 218:157–167

    Article  Google Scholar 

  80. Ali NM, Mohammed AJ (2023) Removal of malachite green by poly acrylic beads. Wasit Journal of Pure Sciences 2(1):55–66. https://doi.org/10.31185/wjps.117

    Article  Google Scholar 

  81. Mahapatra U, Chatterjee A, Das C, Manna AK (2021) Adsorptive removal of hexavalent chromium and methylene blue from simulated solution by activated carbon synthesized from natural rubber industry biosludge. Environ Technol Innova 22:101427

    Article  Google Scholar 

  82. Dao MU, Le HS, Hoang HY, Tran VA, Doan VD, Le TTN, Sirotkin A (2021) Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: facile preparation, characterization, and adsorption properties. Environ Res 198:110481

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, Malaysia for the research facilities. The author (Zeid A. ALOthman) is grateful to the Researchers Supporting Project No. (RSP2024R1), King Saud University, Riyadh, Saudi Arabia.

Funding

The author (Zeid A. ALOthman) is grateful to the Researchers Supporting Project No. (RSP2024R1), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Ali H. Jawad: conceptualization, resources, visualization, supervision, project administration, writing—review and editing. Siti Nabihah Jumadi: formal analysis, validation, data curation, methodology, software, writing—original. Zeid A. ALOthman: formal analysis, validation, visualization. Lee D. Wilson: writing—review and editing, visualization.

Corresponding author

Correspondence to Ali H. Jawad.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, A.H., Jumadi, S.N., ALOthman, Z.A. et al. Thermochemical treatment of mixed mandarin peel and algae via microwave and H3PO4 activation: process optimization and adsorption mechanism for methylene blue dye. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05598-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05598-y

Keywords

Navigation