Skip to main content

Advertisement

Log in

Novel Ficus retusa L. aerial root fiber: a sustainable alternative for synthetic fibres in polymer composites reinforcement

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Awareness about the global sustainability among consumers had turned industries in producing eco-friendly, lightweight, and affordable materials. In line up, natural fibre–reinforced composites (NFRC) have experienced tremendous expansion in recent years. The researchers were working in finding a novel natural fibre with an enhanced properties which compete the synthetic fibers in its application. This investigation focused to characterize the novel aerial root of Ficus retusa L. (FRL) fiber, including analyses of their physical properties, chemical composition, thermal stability, crystalline properties, surface properties, mechanical properties, and morphology. Physical study has shown the FRL’s aerial root fiber dimensions to be 495 µm in diameter and 1376 kg/m3 in density. Its higher cellulose percentage (64.12%) and small wax percentage (0.33%) gave superior specific strength and improved bonding characteristics. Nuclear magnetic resonance (NMR) spectroscopy examination and FTIR was also conducted out to support the chemical groups existing in this fibre. The X-ray diffraction (XRD) examination of FRL’s aerial root fiber shows a higher crystallinity index (CI) value 55.96% and lower crystallite size (CS) of 4.13 nm. The average strain to failure of the raw fiber was 7.5–11.4%, the Young’s modulus was 3.33–5.81 GPa, and the tensile strength was 331.22–465.45 MPa for the fiber gauge length 10 to 50 mm. The angle value of the microfibrils in the aerial root fiber of FRL is 7.2°. TG and DTG thermal study confirmed the fiber’s maximum degradation temperature (527 °C) and thermal stability (342 °C). Surface roughness measurements made with a SEM and an AFM both pointed to the least amount of roughness in FRL’s aerial root fiber. The foregoing results established that novel FRL’s aerial root fiber was an excellent reinforcement for making fibre reinforced composites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Gillela S, Yadav SM, Sihag K et al (2022) (2022) A review on Lantana camara lignocellulose fiber-reinforced polymer composites. Biomass Convers Biorefin 1:1–19. https://doi.org/10.1007/S13399-022-02402-7

    Article  Google Scholar 

  2. Singh JK, Rout AK (2022) Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L. Biomass Convers Biorefin 1:1–14. https://doi.org/10.1007/S13399-022-03238-X/TABLES/7

    Article  Google Scholar 

  3. Somasundaram R, Rajamoni R, Suyambulingam I et al (2022) Utilization of discarded Cymbopogon flexuosus root waste as a novel lignocellulosic fiber for lightweight polymer composite application. Polym Compos 43:2838–2853. https://doi.org/10.1002/pc.26580

    Article  CAS  Google Scholar 

  4. Udhayakumar A, Mayandi K, Rajini N et al (2023) Extraction and characterization of novel natural fiber from Cryptostegia grandiflora as a potential reinforcement in biocomposites. J Nat Fibers 20. https://doi.org/10.1080/15440478.2022.2159607

  5. Andoko A, Gapsari F, Diharjo K et al (2023) Isolation of microcellulose from timoho fiber using the process of delinigfication and maceration: evaluation of physical, chemical, structural, and thermal properties. Int J Biol Macromol 224:48–54. https://doi.org/10.1016/j.ijbiomac.2022.10.225

    Article  CAS  PubMed  Google Scholar 

  6. Sheeba KRJ, Alagarasan JK, Dharmaraja J et al (2023) Physico–chemical and extraction properties on alkali–treated Acacia pennata fiber. Environ Res 233:116415. https://doi.org/10.1016/j.envres.2023.116415

    Article  CAS  PubMed  Google Scholar 

  7. Ren Y, Cheng M, Gong J, Li Z, Li Q, Liu X, Zhang J (2023) A green process for flax fiber extraction by white rot fungus (Laccase mediators system) in a less-water environment. Ind Crop Prod 193:116209. https://doi.org/10.1016/j.indcrop.2022.116209

    Article  CAS  Google Scholar 

  8. Rathinavelu R, Paramathma BS (2022) Examination of characteristic features of raw and alkali-treated cellulosic plant fibers from Ventilago maderaspatana for composite reinforcement. Biomass Convers Biorefin 1:1–13. https://doi.org/10.1007/S13399-022-03461-6/FIGURES/8

    Article  Google Scholar 

  9. Pokhriyal M, Rakesh PK, Rangappa SM, Siengchin S (2023) Effect of alkali treatment on novel natural fiber extracted from Himalayacalamus falconeri culms for polymer composite applications. Biomass Convers Biorefin 1:1–17. https://doi.org/10.1007/S13399-023-03843-4/FIGURES/8

    Article  Google Scholar 

  10. Nandakumar N, Kaliappan S, Kumar A, Patil PP (2022) High content cellulosic Abelmoschus esculentus fibre and tamarind kernel powder–reinforced epoxy composite. Biomass Convers Biorefin 1:1–9. https://doi.org/10.1007/S13399-022-03030-X/FIGURES/6

    Article  Google Scholar 

  11. Rao HJ, Singh S, Janaki Ramulu P (2023) Characterization of a Careya arborea bast fiber as potential reinforcement for light weight polymer biodegradable composites. J Nat Fibers 20:71–87. https://doi.org/10.1080/15440478.2022.2128147

    Article  CAS  Google Scholar 

  12. Vinod A, Sanjay MR, Siengchin S (2023) Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Ind Crop Prod 192:116099

    Article  CAS  Google Scholar 

  13. Chauhan V, Kärki T, Varis J (2022) Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J Thermoplast Compos Mater 35:1169–1209

    Article  CAS  Google Scholar 

  14. Indran S, Divya D, Raja S et al (2022) Physico-chemical, mechanical and morphological characterization of Furcraea selloa K. Koch plant leaf fibers-an exploratory investigation physico-chemical, mechanical and morphological characterization. J Nat Fibers 00:1–17. https://doi.org/10.1080/15440478.2022.2146829

    Article  CAS  Google Scholar 

  15. Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr Polym 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

    Article  CAS  PubMed  Google Scholar 

  16. Akatwijuka O, Gepreel MAH, Abdel-Mawgood A et al (2022) Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Convers Biorefin 1:1–17. https://doi.org/10.1007/S13399-022-02819-0/TABLES/12

    Article  Google Scholar 

  17. Maepa CE, Jayaramudu J, Okonkwo JO et al (2015) Extraction and characterization of natural cellulose fibers from maize tassel. Int J Polym Anal Charact 20:99–109. https://doi.org/10.1080/1023666X.2014.961118

    Article  CAS  Google Scholar 

  18. Jayaramudu J, Guduri BR, Rajulu AV (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79(4):847–851

    Article  CAS  Google Scholar 

  19. Gopinath R, Ganesan K, Saravanakumar SS, Poopathi R (2016) Characterization of new cellulosic fiber from the stem of Sida rhombifolia. Int J Polym Anal Charact 21:123–129. https://doi.org/10.1080/1023666X.2016.1117712

    Article  CAS  Google Scholar 

  20. Raja S, Rajesh R, Indran S, Divya D, Suganya Priyadharshini G (2022) Characterization of industrial discarded novel Cymbopogon flexuosus stem fiber: A potential replacement for synthetic fiber. J Ind Text 51(1_suppl):1207S-1234S. https://doi.org/10.1177/15280837211007507

    Article  CAS  Google Scholar 

  21. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  22. Moshi AAM, Ravindran D, Bharathi SRS et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  CAS  PubMed  Google Scholar 

  23. Ganapathy T, Sathiskumar R, Senthamaraikannan P et al (2019) Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. Int J Biol Macromol 138:573–581. https://doi.org/10.1016/j.ijbiomac.2019.07.136

    Article  CAS  PubMed  Google Scholar 

  24. Narayanasamy P, Balasundar P, Senthil S et al (2020) Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 150:793–801. https://doi.org/10.1016/j.ijbiomac.2020.02.134

    Article  CAS  PubMed  Google Scholar 

  25. Selvaraj M, Chapagain P, Mylsamy B (2023) Characterization studies on new natural cellulosic fiber extracted from the stem of Ageratina Adenophora plant. J Nat Fibers 20(1):2156019. https://doi.org/10.1080/15440478.2022.2156019

    Article  CAS  Google Scholar 

  26. Maache M, Bezazi A, Amroune S et al (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096

    Article  CAS  PubMed  Google Scholar 

  27. Jebadurai SG, Raj RE, Sreenivasan VS, Binoj JS (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydr Polym 207:675–683. https://doi.org/10.1016/j.carbpol.2018.12.027

    Article  CAS  PubMed  Google Scholar 

  28. Selvaraj M, S A, Mylsamy B (2023) Characterization of new natural fiber from the stem of Tithonia diversifolia plant. J Nat Fibers 20(1):2167144. https://doi.org/10.1080/15440478.2023.2167144

    Article  Google Scholar 

  29. Manimaran P, Saravanan SP, Sanjay MR et al (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J Market Res 8:1952–1963. https://doi.org/10.1016/j.jmrt.2018.12.015

    Article  CAS  Google Scholar 

  30. Selvaraj M, N P, PT R, Mylsamy B, S S (2023) Extraction and characterization of a new natural cellulosic fiber from bark of Ficus Carica plant as potential reinforcement for polymer composites. J Nat Fibers 20(2):2194699. https://doi.org/10.1080/15440478.2023.2194699

    Article  CAS  Google Scholar 

  31. Natarajan T, Kumaravel A, Palanivelu R (2016) Extraction and characterization of natural cellulosic fiber from Passiflora foetida stem. Int J Polym Anal Charact 21:478–485. https://doi.org/10.1080/1023666X.2016.1168636

    Article  CAS  Google Scholar 

  32. Tiwari YM, Sarangi SK (2022) Characterization of raw and alkali treated cellulosic Grewia flavescens natural fiber. Int J Biol Macromol 209:1933–1942. https://doi.org/10.1016/j.ijbiomac.2022.04.169

    Article  CAS  PubMed  Google Scholar 

  33. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  CAS  PubMed  Google Scholar 

  34. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SR et al (2020) Characterization of surface-modified natural cellulosic fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 156:997–1006. https://doi.org/10.1016/j.ijbiomac.2020.04.117

    Article  CAS  Google Scholar 

  35. Sanjay MR, Siengchin S, Parameswaranpillai J et al (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121

    Article  Google Scholar 

  36. Rantheesh J, Indran S, Raja S, Siengchin S (2023) Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro-industrial residual waste oil cake for futuristic applications. Biomass Conversion and Biorefinery 13(5):4393–4411. https://doi.org/10.1007/s13399-022-03467-0

    Article  CAS  Google Scholar 

  37. Shyam Kumar R, Balasundar P, Al-Dhabi NA et al (2021) A new natural cellulosic pigeon pea (Cajanus cajan) pod fiber characterization for bio-degradable polymeric composites. J Nat Fibers 18:1285–1295. https://doi.org/10.1080/15440478.2019.1689887

    Article  CAS  Google Scholar 

  38. Vijay R, Lenin Singaravelu D, Vinod A et al (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol 125:99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

    Article  CAS  PubMed  Google Scholar 

  39. Sundaram RS, Rajamoni R, Suyambulingam I, Isaac R (2022) Comprehensive characterization of industrially discarded cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J Nat Fibers 19(13):7241–7256. https://doi.org/10.1080/15440478.2021.1944435

    Article  CAS  Google Scholar 

  40. Porras A, Maranon A, Ashcroft IA (2015) Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Compos B Eng 74:66–73. https://doi.org/10.1016/j.compositesb.2014.12.033

    Article  CAS  Google Scholar 

  41. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Physico-chemical properties of alkali-treated Acacia leucophloea fibers. Int J Polym Anal Charact 20:704–713. https://doi.org/10.1080/1023666X.2015.1081133

    Article  CAS  Google Scholar 

  42. Rao J, Singh S, Ramulu PJ, Santos TF, Santos CM, Sanjay MR, ... Siengchin S (2024) Effect of chemical treatment on physio-mechanical properties of lignocellulose natural fiber extracted from the bark of careya arborea tree. Heliyon

  43. Manimaran P, Jeyasekaran AS, Purohit R, Pitchayya Pillai G (2020) An Experimental and numerical investigation on the mechanical properties of addition of wood flour fillers in red banana peduncle fiber reinforced polyester composites. J Nat Fibers 17:1140–1158. https://doi.org/10.1080/15440478.2018.1558148

    Article  CAS  Google Scholar 

  44. Suryanto H, Marsyahyo E, Irawan YS, Soenoko R (2014) Morphology, structure, and mechanical properties of natural cellulose fiber from Mendong grass (Fimbristylis globulosa). J Nat Fibers 11:333–351. https://doi.org/10.1080/15440478.2013.879087

    Article  CAS  Google Scholar 

  45. Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Google Scholar 

  46. Soma Sundaram Pillai R, Rajamoni R, Suyambulingam I et al (2022) Synthesis and characterization of cost-effective industrial discarded natural ceramic particulates from Cymbopogon flexuosus plant shoot for potential polymer/metal matrix reinforcement. Polym Bull 79:8765–8806. https://doi.org/10.1007/s00289-021-03913-5

    Article  CAS  Google Scholar 

  47. Raju JSN, Depoures MV, Kumaran P (2021) Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 186:886–896. https://doi.org/10.1016/j.ijbiomac.2021.07.061

    Article  CAS  PubMed  Google Scholar 

  48. Kord B, Ayrilmis N, Ghalehno MD (2021) Effect of fungal degradation on technological properties of carbon nanotubes reinforced polypropylene/rice straw composites. Polym Polym Compos 29:303–310. https://doi.org/10.1177/0967391120915347

    Article  CAS  Google Scholar 

  49. Khuntia T, Biswas S (2022) Characterization of a novel natural filler from sirisha bark. J Nat Fibers 19:3083–3092. https://doi.org/10.1080/15440478.2020.1838997

    Article  CAS  Google Scholar 

  50. Divya D, Suyambulingam I, Sanjay MR, Siengchin S (2022) Suitability examination of novel cellulosic plant fiber from Furcraea selloa K. Koch peduncle for a potential polymeric composite reinforcement. Polym Compos 43(7):4223–4243. https://doi.org/10.1002/pc.26683

    Article  CAS  Google Scholar 

  51. Belouadah Z, Toubal LM, Belhaneche-Bensemra N, Ati A (2021) Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant. Int J Biol Macromol 168:806–815. https://doi.org/10.1016/j.ijbiomac.2020.11.142

    Article  CAS  PubMed  Google Scholar 

  52. Santos TF, Santos CM, Aquino MS, Suyambulingam I, Kamil Hussein E, Verma A, ..., Nascimento JHO (2024) Towards Sustainable and Ecofriendly Polymer Composite Materials from Bast Fibers: A Systematic Review. Eng Res Express. https://doi.org/10.1088/2631-8695/ad2640

  53. Binoj JS, Raj RE, Indran S (2018) Characterization of industrial discarded fruit wastes (Tamarindus indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Process Saf Environ Prot 116:527–534. https://doi.org/10.1016/j.psep.2018.02.019

    Article  CAS  Google Scholar 

  54. BVarma M, Chandran S, Vijay Kumar V, Suyambulingam I, Siengchin S (2024) A comprehensive review on the machining and joining characteristics of natural fiber‐reinforced polymeric composites. Polym Compos https://doi.org/10.1002/pc.28148

  55. Manimaran P, Saravanan SP, Sanjay MR et al (2020) New lignocellulosic Aristida adscensionis fibers as novel reinforcement for composite materials: extraction, characterization and Weibull distribution analysis. J Polym Environ 28:803–811. https://doi.org/10.1007/s10924-019-01640-7

    Article  CAS  Google Scholar 

  56. Indran S, Edwin Raj R, Sreenivasan VS (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr Polym 110:423–429. https://doi.org/10.1016/j.carbpol.2014.04.051

    Article  CAS  PubMed  Google Scholar 

  57. Naili H, Jelidi A, Limam O, Khiari R (2017) Extraction process optimization of Juncus plant fibers for its use in a green composite. Ind Crops Prod 107:172–183. https://doi.org/10.1016/j.indcrop.2017.05.006

    Article  CAS  Google Scholar 

  58. kumaar AS, Senthilkumar A, Saravanakumar SS, et al (2022) Mechanical properties of alkali-treated Carica papaya fiber-reinforced epoxy composites. J Nat Fibers 19:269–279. https://doi.org/10.1080/15440478.2020.1739590

  59. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2020) Structural characterization and mechanical behaviour of sodium hydroxide-treated Urena lobata fiber reinforced polypropylene matrix composites. Fibers and Polymers 21:2983–2992. https://doi.org/10.1007/s12221-020-1289-3

    Article  CAS  Google Scholar 

  60. Sanjay MR, Madhu P, Jawaid M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    Article  CAS  Google Scholar 

  61. Ashok RB, Srinivasa CV, Basavaraju B (2019) Dynamic mechanical properties of natural fiber composites—a review. Adv Compos Hybrid Mater 2:586–607

    Article  Google Scholar 

  62. Madhu P, Sanjay MR, Pradeep S et al (2019) Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. J Market Res 8:2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006

    Article  CAS  Google Scholar 

  63. Manimaran P, Prithiviraj M, Saravanakumar SS, et al (2018) Physicochemical, tensile, and thermal characterization of new natural cellulosic fibers from the stems of Sida cordifolia. Journal of Natural Fibers 15:860–869. https://doi.org/10.1080/15440478.2017.1376301

  64. A.N. B, K.J. N (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208. https://doi.org/10.1016/j.carbpol.2017.06.065

  65. Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Determination of properties of Althaea officinalis L. (marshmallow) fibres as a potential plant fibre in polymeric composite materials. Compos B Eng 57:180–186. https://doi.org/10.1016/j.compositesb.2013.09.041

    Article  CAS  Google Scholar 

  66. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  67. Alotaibi MD, Alshammari BA, Saba N et al (2019) Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int J Biol Macromol 135:69–76. https://doi.org/10.1016/j.ijbiomac.2019.05.102

    Article  CAS  PubMed  Google Scholar 

  68. Sunesh NP, Indran S, Divya D, Suchart S (2022) Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polym Chem 43(9):6476–6488

    CAS  Google Scholar 

  69. Sakji N, Jabli M, Khoffi F et al (2016) Physico-chemical characteristics of a seed fiber arised from Pergularia tomentosa L. Fibers and Polymers 17:2095–2104. https://doi.org/10.1007/s12221-016-6461-4

    Article  CAS  Google Scholar 

  70. Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  CAS  PubMed  Google Scholar 

  71. Sonia A, Priya Dasan K (2013) Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr Polym 92:668–674. https://doi.org/10.1016/j.carbpol.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  72. Elmoudnia H, Faria P, Jalal R, et al (2023) Effectiveness of alkaline and hydrothermal treatments on cellulosic fibers extracted from the Moroccan Pennisetum Alopecuroides plant: chemical and morphological characterization. Carbohydr Polym Technol Appl 5. https://doi.org/10.1016/j.carpta.2022.100276

  73. Abdul Khalil HPS, Lai TK, Tye YY et al (2018) Preparation and characterization of microcrystalline cellulose from sacred bali bamboo as reinforcing filler in seaweed-based composite film. Fibers and Polymers 19:423–434. https://doi.org/10.1007/s12221-018-7672-7

    Article  CAS  Google Scholar 

  74. Roopan SM (2017) An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. Int J Biol Macromol 103:508–514

    Article  CAS  PubMed  Google Scholar 

  75. Karthik T, Murugan R (2013) Characterization and analysis of ligno-cellulosic seed fiber from Pergularia daemia plant for textile applications. Fibers and Polymers 14:465–472. https://doi.org/10.1007/s12221-013-0465-0

    Article  CAS  Google Scholar 

  76. Senthamaraikannan P, Saravanakumar SS, Sanjay MR et al (2019) Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Mater Lett 240:221–224. https://doi.org/10.1016/j.matlet.2019.01.024

    Article  CAS  Google Scholar 

  77. Jagadeesh P, Rangappa SM, Suyambulingam I, Siengchin S, Puttegowda M, Binoj JS, .., Cuadrado MMM (2023) Drilling characteristics and properties analysis of fiber reinforced polymer composites: A comprehensive review. Heliyon.  https://doi.org/10.1016/j.heliyon.2023.e14428

  78. Nijandhan K, Muralikannan R, Venkatachalam S (2018) Ricinus communis fiber as potential reinforcement for lightweight polymer composites. Mater Res Express 5(9):095307. https://doi.org/10.1088/2053-1591/aad617

  79. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS (2019) Characterization of cellulose fibers in Thespesia populnea barks: influence of alkali treatment. Carbohydr Polym 217:178–189. https://doi.org/10.1016/j.carbpol.2019.04.063

    Article  CAS  PubMed  Google Scholar 

  80. Muthu chozha rajan B, Indran S, Divya D, et al (2020) Mechanical and thermal properties of Chloris barbata flower fiber/epoxy composites: effect of alkali treatment and fiber weight fraction. J Nat Fibers 00:1–14 https://doi.org/10.1080/15440478.2020.1848703

  81. Paiva MC, Ammar I, Campos AR et al (2007) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138. https://doi.org/10.1016/j.compscitech.2006.05.019

    Article  CAS  Google Scholar 

  82. de Morais TE, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. https://doi.org/10.1007/s10570-010-9403-0

    Article  CAS  Google Scholar 

  83. Kommula VP, Reddy KO, Shukla M et al (2016) Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass. Int J Polym Anal Charact 21:18–28. https://doi.org/10.1080/1023666X.2015.1089650

    Article  CAS  Google Scholar 

  84. Divya D, Jenish I, Raja S (2022) Comprehensive characterization of Furcraea selloa K. Koch peduncle fiber-reinforced polyester composites-effect of fiber length and weight ratio. Adv Mater Sci Eng 2022:1–10. https://doi.org/10.1155/2022/8099500

    Article  CAS  Google Scholar 

  85. Sampathkumar D, Punyamurthy R, Bennehalli B, Venkateshappa SC (2015) Physical characterization of natural lignocellulosic single areca fiber. Ciencia e Tecnologia dos Materiais 27:121–135. https://doi.org/10.1016/j.ctmat.2015.10.001

    Article  Google Scholar 

  86. Kocaman S, Ahmetli G (2020) Effects of various methods of chemical modification of lignocellulose hazelnut shell waste on a newly synthesized bio-based epoxy composite. J Polym Environ 28:1190–1203. https://doi.org/10.1007/s10924-020-01675-1

    Article  CAS  Google Scholar 

  87. Venkatram B, Kailasanathan C, Seenikannan P, Paramasamy S (2016) Study on the evaluation of mechanical and thermal properties of natural sisal fiber/general polymer composites reinforced with nanoclay. Int J Polym Anal Charact 21:647–656. https://doi.org/10.1080/1023666X.2016.1194616

    Article  CAS  Google Scholar 

  88. Mayakun J, Klinkosum P, Chaichanasongkram T et al (2022) Characterization of a new natural cellulose fiber from Enhalus acoroides and its potential application. Ind Crops Prod 186:115285. https://doi.org/10.1016/j.indcrop.2022.115285

    Article  CAS  Google Scholar 

  89. Ding L, Han X, Cao L et al (2022) Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresources Bioproducts 7:190–200. https://doi.org/10.1016/j.jobab.2021.11.002

    Article  CAS  Google Scholar 

  90. Darus SAAZM, Ghazali MJ, Azhari CH et al (2020) Physicochemical and thermal properties of lignocellulosic fiber from Gigantochloa scortechinii bamboo: effect of steam explosion treatment. Fibers Polym 21:2186–2194. https://doi.org/10.1007/s12221-020-1022-2

    Article  CAS  Google Scholar 

  91. Rizwan M, Gilani SR, Durrani AI, Naseem S (2021) Cellulose extraction of Alstonia scholaris: a comparative study on efficiency of different bleaching reagents for its isolation and characterization. Int J Biol Macromol 191:964–972. https://doi.org/10.1016/j.ijbiomac.2021.09.155

    Article  CAS  PubMed  Google Scholar 

  92. Rajkumar R, Manikandan A, Saravanakumar SS (2016) Physicochemical properties of alkali-treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 21:359–364. https://doi.org/10.1080/1023666X.2016.1160509

    Article  CAS  Google Scholar 

  93. Mugesh Raja V, Sathees Kumar S (2021) Exploration of mechanical attributes, thermal behaviors and atomic force analysis of alkali treated hybrid polyester composites for an engineering application. Fibers Polym 22:2535–2542. https://doi.org/10.1007/s12221-021-1252-y

    Article  CAS  Google Scholar 

  94. M U, S G, (2021) Characterization of bio-fiber from Pongamia pinnata L. bark as possible reinforcement of polymer composites. J Nat Fibers 18:823–833. https://doi.org/10.1080/15440478.2019.1658254

    Article  CAS  Google Scholar 

  95. Fiore V, Valenza A, Di Bella G (2011) Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos Sci Technol 71:1138–1144. https://doi.org/10.1016/j.compscitech.2011.04.003

    Article  CAS  Google Scholar 

  96. Bezazi A, Amroune S, Scarpa F, Dufresne A, Imad A (2020) Investigation of the date palm fiber for green composites reinforcement: Quasi-static and fatigue characterization of the fiber. Ind Crop Prod 146:112135. https://doi.org/10.1016/j.indcrop.2020.112135

    Article  Google Scholar 

  97. Balavairavan B, Saravanakumar SS, Manikandan KM (2021) Physicochemical and structural properties of green biofilms from poly (vinyl alcohol)/nano coconut shell filler. J Nat Fibers 18:2112–2126. https://doi.org/10.1080/15440478.2020.1723778

    Article  CAS  Google Scholar 

  98. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  99. Joe MS, Sudherson DPS, Suyambulingam I et al (2023) Extraction and characterization of novel biomass–based cellulosic plant fiber from Ficus benjamina L. stem for a potential polymeric composite reinforcement. Biomass Conv Bioref 13:14225–14239. https://doi.org/10.1007/s13399-023-03759-z

    Article  CAS  Google Scholar 

  100. Kathiresan M, Pandiarajan P, Senthamaraikannan P, Saravanakumar SS (2016) Physicochemical properties of new cellulosic Artisdita hystrix leaf fiber. Int J Polym Anal Charact 21:663–668. https://doi.org/10.1080/1023666X.2016.1194636

    Article  CAS  Google Scholar 

  101. Suryanto H, Marsyahyo E, Irawan YS (2014) Morphology, structure, and mechanical properties of natural cellulose fiber from Mendong grass (Fimbristylis globulosa). Natural fibers 11:333–351https://doi.org/10.1080/15440478.2013.879087

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for supporting and funding this research work through Grand No. IMSIU-RG23050.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for supporting and funding this research work through Grand No. IMSIU-RG23050.

Author information

Authors and Affiliations

Authors

Contributions

Murugesan Palaniappan and Srinivas Tadepalli: conducted all the experimental works and written original manuscript. All other authors: supported for data analysis and review the final draft.

Corresponding author

Correspondence to Murugesan Palaniappan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Ficus retusa L. aerial root fiber is characterized for the very first time in this article.

• Suitability characterization for polymer composites was done.

• Higher availability and has the potential for usage in textile and green composite.

• A statistical tool (Weibull distribution plot) has been used to analyse fiber properties.

• Morphological studies showed the viability of using as a futuristic reinforcing material.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaniappan, M., Palanisamy, S., Murugesan, T.M. et al. Novel Ficus retusa L. aerial root fiber: a sustainable alternative for synthetic fibres in polymer composites reinforcement. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05495-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05495-4

Keywords

Navigation