Skip to main content

Advertisement

Log in

A characterization study on toughening vinyl ester composites using annealed biosilica from fox tail millet husk and nettle fiber

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research provides a thorough analysis of nettle fiber-toughened vinyl ester composites that integrate annealed biosilica sourced from foxtail millet husk. The aim of incorporating these bioderived materials is to augment the mechanical and toughening characteristics of the vinyl ester matrix in eco-friendly way. The biosilica, extracted from foxtail millet husk, undergoes annealing process at two different phases at 1200 °C for 2 h and 1200 °C for 4 h. Further, the fabrication process adopts the hand layup method, and characterizations adhere to ASTM standards. Results revealed that among various composites, VNS32 stands out with remarkable mechanical properties, boasting a tensile strength of 162 MPa, flexural strength of 259 MPa, compression strength of 233 MPa, v-notch shear strength of 17.1 MPa, impact energy of 4.08 J, and a hardness rating of 89. These outcomes underscore the improvement facilitated by the inclusion of annealed biosilica, with a notable distinction favoring biosilica annealed at 1200 °C for 4 h over the 2-h annealing duration. The wear characteristics align with the trends observed in mechanical properties, where VNS32 demonstrates superior wear resistance, exhibiting a low specific wear rate of 0.05 mm3/Nm and a coefficient of friction of 0.15 in dry wear. In wet wear, VNS32 maintains high performance with a specific wear rate of 0.032 mm3/Nm and a coefficient of friction of 0.112 with an improvement of about 87.14% on compare with plain resin. Optical microscopic images of worn surfaces contribute additional insights into wear mechanisms and the role played by annealed biosilica in preventing material loss. The outcomes of this comprehensive characterization study underscore the effectiveness of integrating annealed biosilica from foxtail millet husk and nettle fiber in fortifying vinyl ester composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

There is no separate data to upload separately.

References

  1. Ganesh S, Ramakrishnan SK, Palani V, Sundaram M, Sankaranarayanan N, Ganesan SP (2022) Investigation on the mechanical properties of Ramie/Kenaf fibers under various parameters using GRA and TOPSIS methods. Polym Compos 43(1):130–143

    Article  CAS  Google Scholar 

  2. Sumesh KR, Saikrishnan G, Pandiyan P, Prabhu L, Gokulkumar S, Priya AK et al (2022) The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. J Ind Text 51(5_suppl):8626S–8644S

    Article  CAS  Google Scholar 

  3. Alshahrani H, Arun Prakash VR (2023) Development of environmental friendly biocomposites using domestic discarded wastes as potential fibre and filler. Biomass Convers Biorefin 1–12

  4. Bourchak M, Ajaj R, Khalid M, Juhany KA, Arun Prakash VR, Alshahrani H (2023) Development of light weight sustainable pineapple/kevlar hybridized fiber and peanut husk cellulose toughened vinyl ester biocomposite for unmanned aerial vehicle applications. J Vinyl Addit Technol 29(3):448–457

    Article  CAS  Google Scholar 

  5. Vincent VA, Kailasanathan C, Shanmuganathan VK, Kumar JSP, Arun Prakash VR (2022) Strength characterization of caryotaurens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC toughened epoxy structural composite. Biomass Convers Biorefin 12(9):4009–4019

    Article  CAS  Google Scholar 

  6. Yadav R, Singh M, Shekhawat D, Lee SY, Park SJ (2023) The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: a review. Compos A: Appl Sci Manuf 175:107775

  7. Karthik K, Manimaran A (2020) Wear behaviour of ceramic particle reinforced hybrid polymer matrix composites. Int J Ambient Energy 41(14):1608–1612

    Article  CAS  Google Scholar 

  8. Bafakeeh OT, Shewakh WM, Abu-Oqail A, Abd-Elaziem W, Abdel Ghafaar M, Abu-Okail M (2021) Synthesis and characterization of hybrid fiber-reinforced polymer by adding ceramic nanoparticles for aeronautical structural applications. Polymers 13(23):4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yadav R, Lee HH, Meena A, Sharma YK (2022) Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array. Tribol Int 175:107860

    Article  CAS  Google Scholar 

  10. Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA (2023) Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon

    Book  Google Scholar 

  11. Zgłobicka IB, Dobkowska A, Zielińska A, Borucinska E, Kruszewski MJ, Zybała R et al (2023) In-depth analysis of the influence of bio-silica filler (Didymospheniageminata frustules) on the properties of Mg matrix composites. J Magnes Alloy 11(8):2853–2871

    Article  Google Scholar 

  12. Poomathi S, Roji SSS (2022) Experimental investigations on Palmyra sprout fiber and biosilica toughened epoxy bio composite. Biomass Convers Biorefin 1–9

  13. Thilagham KT, Devi GG, Kadirvel A, Kumar D (2022) Development of wheat husk biosilica and characterization of its areca reinforced polyester composite. Biomass Convers Biorefin 1–10

  14. Lakshmipathi AR, Satishkumar P, Nagabhooshanam N, Rao PKV, Kumar DS, Chakravarthy AK et al (2023) Shear strength, wear, thermal conductivity, and hydrophobicity behavior of fox millet husk biosilica and Amaranthus dubius stem fiber–reinforced epoxy composite: a concept of biomass conversion. Biomass Convers Biorefin 1–9

  15. Neopolean P, Karuppasamy K (2022) Characterization of silane treated Opuntia short fibre and bagasse biosilica toughened epoxy resin composite. Silicon 14(15):9331–9340

    Article  CAS  Google Scholar 

  16. Sivamurugan P, Selvam R, Pandian M, Ashraf MS, Chakrapani IS, Thanikasalam A et al (2022) Extraction of novel biosilica from finger millet husk and its coconut rachilla-reinforced epoxy biocomposite:mechanical, thermal, and hydrophobic behaviour. Biomass Convers Biorefin 1–9

  17. Kumar RR, Singh N, Singh S, Vinutha T, Krishnan V, Goswami S et al (2022) Nutritional supremacy of pearl-and foxtail millets: assessing the nutrient density, protein stability and shelf-life of flours in millets and cereals for developing nutri-stable foods. J Plant Biochem Biotechnol 31(4):837–852

    Article  CAS  Google Scholar 

  18. Sabino SDRF, Cordeiro BGB, Silva LD, Pukasiewicz AG, Zanotto ED, Serbena FC (2022) Microstructural and residual stress effects on toughening of stoichiometric BaO.2SiO2 glass-ceramics. J Eur Ceram Soc 42(13):6119–6134

    Article  CAS  Google Scholar 

  19. Alshahrani H, Vincent Rethnam AP (2024) Effect of abaca bracts biocarbon volume and infill ratio on mechanical, wear, fatigue and hydrophobic behaviour of acrylonitrile butadiene styrene biocomposites tailored using 3D printing. Fibers and Polym 1–11

  20. Khan MK, Faisal M, Arun Prakash VR (2024) Effect of silane coupling grafted polyethylene terephthalate foam and areca fruit fiber reinforced chitin modified vinyl ester prosthetic composite on thermal and water accelerated aging conditions. Polym Compos

  21. Wu M, Tang Z, Ye P, Long M, Wu F, Jiang F (2023) Effect of annealing treatment on microstructure of micro arc oxidation ceramic film on Al-Mg-Sc alloy. Mater Charact 202:112991

    Article  CAS  Google Scholar 

  22. Xue Y, Pu G, Yu M, Chen S, Gan L, Lin L et al (2023) Effects of air annealing treatments on the microstructure, components, and mechanical properties of magnetron sputtered Al2O3–Cr2O3–ZrO2 composite coatings. Ceram Int 49(5):7589–7599

    Article  CAS  Google Scholar 

  23. Deng W, Xing S, Chen M (2023) Effect of annealing treatments on microstructure, tensile and wear properties of cold-rolled FeCoCrNiMn high entropy alloy. J Mater Res Technol 27:3849–3859

    Article  CAS  Google Scholar 

  24. Du W, Tu J, Qiu M, Zhou S, Luo Y, Ong WL, Zhao J (2023) Temperature-mediated structural evolution of vapor–phase deposited cyclosiloxane polymer thin films for enhanced mechanical properties and thermal conductivity. Int J Extreme Manuf 5(2):025101

    Article  Google Scholar 

  25. Isloor AM, Anil S, Venkatesan J, Kumar GM (2019) Calcium phosphate bioceramics with polyvinyl alcohol hydrogels for biomedical applications. Mater Res Express 6(12):125404

    Article  ADS  Google Scholar 

  26. Alshahrani H, Arun Prakash VR (2024) Characterisation of microcrystalline cellulose from waste green pea pod sheath and its sunn hemp fibre-polyester composite: a step towards greener manufacturing. Physiol Plant 176(1):e14166

  27. Khan MK, Faisal M, Arun Prakash VR (2024) Damage investigations on natural fiber-epoxy human prosthetic composites toughened using echinoidea spike β-chitin biopolymer. Biomass Convers Biorefin 1–11

  28. Mudoi MP, Sinha S, Parthasarthy V (2021) Polymer composite material with nettle fiber reinforcement: a review. Bioresour Technol Rep 16:100860

  29. Prakash VA, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos A: Appl Sci Manuf 118:317–326

    Article  Google Scholar 

  30. Alshahrani H, Prakash VA (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod 374:133931

    Article  CAS  Google Scholar 

  31. Srivastava KR, Singh MK, Mishra PK, Srivastava P (2019) Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. J Polym Res 26(4):95

    Article  Google Scholar 

  32. Ben Samuel J, Julyes Jaisingh S, Ramadoss R, Maridurai T (2023) Mechanical, wear and fatigue behaviour of neem oil and nanosilica toughened areca fibre reinforced epoxy resin composite. Silicon 15(8):3525–3533

    Article  CAS  Google Scholar 

  33. Mudoi MP, Sinha S, Parthasarthy V (2023) Himalayan nettle fibre-reinforced polymer composite: a physical, mechanical, and thermal analysis. Biomass Convers Biorefin 1–20

  34. Ikrama M (2023) Catalytic and antibacterial activity of annealed nickel sulfides quantum dots. Micromater Interfaces 1(1)

  35. Arun Prakash VR, Xavier JF, Ramesh G, Maridurai T, Kumar KS, Raj RBS (2022) Mechanical, thermal and fatigue behaviour of surface-treated novel Caryotaurens fibre–reinforced epoxy composite. Biomass Convers Biorefin 12(12):5451–5461

    Article  CAS  Google Scholar 

  36. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  ADS  Google Scholar 

  37. Dubiel B, Gola K, Staroń S, Pasiowiec H, Indyka P, Gajewska M et al (2023) Effect of high temperature annealing on the microstructure evolution and hardness behavior of the Inconel 625 superalloy additively manufactured by laser powder bed fusion. Arch Civ Mech Eng 23(4):249

    Article  Google Scholar 

  38. Diniță A, Neacșa A, Portoacă AI, Tănase M, Ilinca CN, Ramadan IN (2023) Additive manufacturing post-processing treatments, a review with emphasis on mechanical characteristics. Materials 16(13):4610. https://doi.org/10.3390/ma16134610

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundaramoorthy R, Parthasarathy V, Subramanian J, Ng LF, Jesuarockiam N (2024) Wear behavior of the natural fiber-reinforced thermoplastic composites. In: Tribological properties, performance and applications of biocomposites, pp 105–114

    Chapter  Google Scholar 

  40. Aliasker KT, Gopal PM, Naveen S, Madhu S, Yuvaraj KP (2023) Exploring the effects of self-lubricating MoS2 in magnesium metal matrix composite: investigation on wear, corrosion, and mechanical properties. Colloids Surf A: Physicochem Eng Asp 677:132362

    Article  CAS  Google Scholar 

  41. Rajeshkumar G, Seshadri A, Sumesh KR, Nagaraja KC (2021) Influence of Phoenix sp. fiber content on the viscoelastic properties of polymer composites. In: Materials, design, and manufacturing for sustainable environment: Select proceedings of ICMDMSE 2020. Springer, Singapore, pp 131–139

    Chapter  Google Scholar 

  42. Divya D, Yamuna Devi S, Indran S, Raja S, Sumesh KR (2022) Extraction and modification of natural plant fibers—A comprehensive review. In: Plant fibers, their composites, and applications, pp 25–50

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Jamuna—research work and drafting of manuscript. Sumanth Ratna Kandavalli—testing support. Arthis P—testing support. Pothamsetty Kasi V Rao—raw material support.

Corresponding author

Correspondence to R. Jamuna.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamuna, R., Kandavalli, S.R., Arthis, P. et al. A characterization study on toughening vinyl ester composites using annealed biosilica from fox tail millet husk and nettle fiber. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05467-8

Keywords

Navigation