Skip to main content
Log in

Ulva rigida–mediated silver nanoparticles: synthesis, characterization, and antibacterial activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The current study determines a simple and eco-friendly method for the synthesis of silver nanoparticles using the aqueous extract of Ulva rigida as a bio-capping agent. The synthesized silver nanoparticles (Ag NPs) were characterized, and their antibacterial properties were examined. The extract of U. rigida can reduce the silver ions into Ag NPs. The physicochemical properties of synthesized Ag NPs were determined using microscopic and spectroscopic analysis. The UV–Vis absorption peak at 401 nm is evidence of the occurrence of surface plasmon resonance (SPR) of Ag NPs. X-ray diffraction was studied, and the crystalline nature of biosynthesized Ag NPs was confirmed. The average size of U. rigida–mediated Ag NPs was 22.6 nm. The transmission electron microscope shows the monodispersed and spherical-shaped nanoparticles. Furthermore, the synthesized Ag NPs were evaluated against human pathogens such as Pseudomonas aeruginosa and Proteus vulgaris. Bio-fabricated U. rigida–assisted Ag NPs may be helpful in developing new drugs against multidrug resistance pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Periakaruppan R, Kumar TS, Vanathi P, Al-Awsi GRL, Al-Dayan N, Dhanasekaran S (2023) Phyto-synthesis and characterization of parthenium-mediated iron oxide nanoparticles and an evaluation of their antifungal and antioxidant activities and effect on seed germination. JOM 75:5235–5242. https://doi.org/10.1007/s11837-023-05760-3

    Article  ADS  CAS  Google Scholar 

  2. Duraisamy NK, Periakaruppan R, Abed SA, Al-Dayan N, Dhanasekaran S, Aldhayan SHA (2023) Production and characterization of Azadirachta indica-mediated SiO2 nanoparticles and an evaluation of their antioxidant and antimicrobial activities. SILICON 15:6663–6671. https://doi.org/10.1007/s12633-023-02544-x

    Article  CAS  Google Scholar 

  3. Rajiv P, Gowtham C, Jeyapragash D (2022) Utilization of red algae Gracilaria edulis for bio-fabrication of MgO nanoparticles and an evaluation of their anti-oxidant activity. JOM 74:4767–4771. https://doi.org/10.1007/s11837-022-05546-z

    Article  ADS  CAS  Google Scholar 

  4. Savaliya R, Shah D, Singh R, Kumar A, Shanker R, Dhawan A, Singh S (2015) Nanotechnology in disease diagnostic techniques. Curr Drug Metab 17:645–661

    Article  Google Scholar 

  5. Periakaruppan R, Romanovski V, Thirumalaisamy SK, Palanimuthu V, Sampath MP, Anilkumar A, Sivaraj DK, Ahamed NAN, Murugesan S, Chandrasekar D (2023) Innovations in modern nanotechnology for the sustainable production of agriculture. ChemEngineering 7:61. https://doi.org/10.3390/chemengineering7040061

    Article  CAS  Google Scholar 

  6. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  7. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169. https://doi.org/10.1002/adma.201403354

    Article  PubMed  CAS  Google Scholar 

  8. Jacob JM, Ravindran R, Narayanan M, Samuel SM, Pugazhendhi A, Kumar G (2021) Microalgae: a prospective low cost green alternative for nanoparticle synthesis. Curr Opin Environ Sci Health 20:100163. https://doi.org/10.1016/j.coesh.2019.12.005

    Article  Google Scholar 

  9. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140. https://doi.org/10.1016/j.hydromet.2006.03.019

    Article  CAS  Google Scholar 

  10. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. In AIP Conf Proc 1724:020048. https://doi.org/10.1063/1.4945168

    Article  Google Scholar 

  11. Vishwanath R, Negi B (2021) Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr Res Green Sustain Chem 4:100205. https://doi.org/10.1016/j.crgsc.2021.100205

    Article  CAS  Google Scholar 

  12. Nguyen NPU, Dang NT, Doan L, Nguyen TTH (2023) Synthesis of silver nanoparticles: from conventional to ‘modern’methods—a review. Processes 11(9):2617. https://doi.org/10.3390/pr11092617

    Article  CAS  Google Scholar 

  13. Varadavenkatesan T, Pai S, Vinayagam R, Selvaraj R (2021) Characterization of silver nano-spheres synthesized using the extract of Arachis hypogaea nuts and their catalytic potential to degrade dyes. Mater Chem Phys 272:125017. https://doi.org/10.1016/j.matchemphys.2021.125017

    Article  CAS  Google Scholar 

  14. Shet VB, Kumar PS, Vinayagam R, Selvaraj R, Vibha C, Rao S, Pawan SM, Poorvika G, Quintero VM, Ujwal P, Rajesh KS (2023) Cocoa pod shell mediated silver nanoparticles synthesis, characterization, and their application as nanocatalyst and antifungal agent. Appl Nanosci 13(6):4235–4245. https://doi.org/10.1007/s13204-023-02873-8

    Article  ADS  CAS  Google Scholar 

  15. Ali F, Hamza M, Iqbal M, Basha B, Alwadai N, Nazir A (2022) State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z Phys Chem 236(3):291–326. https://doi.org/10.1515/zpch-2021-3084

    Article  CAS  Google Scholar 

  16. Abbas M, Hussain T, Iqbal J, Rehman AU, Zaman MA, Jilani K, Masood N, Al-Mijalli SH, Iqbal M, Nazir A (2022) Synthesis of silver nanoparticle from Allium sativum as an eco-benign agent for biological applications. Polish J Environ Stud 31(1):533–538. https://doi.org/10.15244/pjoes/135764

    Article  CAS  Google Scholar 

  17. Nazir A, Farooq S, Abbas M, Alabbad EA, Albalawi H, Alwadai N, Almuqrin AH, Iqbal M (2021) Synthesis, characterization and photocatalytic application of Sophora mollis leaf extract mediated silver nanoparticles. Z Phys Chem 235(12):1589–1607. https://doi.org/10.1515/zpch-2020-1803

    Article  CAS  Google Scholar 

  18. Yasmin S, Nouren S, Bhatti HN, Iqbal DN, Iftikhar S, Majeed J, Mustafa R, Nisar N, Nisar J, Nazir A, Iqbal M (2020) Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus. Green Proc Synth 9(1):87–96. https://doi.org/10.1515/gps-2020-0010

    Article  Google Scholar 

  19. Chugh D, Viswamalya VS, Das B (2021) Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol 19(1):1–21. https://doi.org/10.1186/s43141-021-00228-w

    Article  Google Scholar 

  20. Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Sivakumar AS, Zhang X, Choi HB, Jeong MS, Choi M, Wang MH (2023) Cellulose-graphene oxide nanocomposites encapsulated with green synthesized silver nanoparticles as an effective antibacterial agent. Mater Today Commun 35:105652. https://doi.org/10.1016/j.mtcomm.2023.105652

    Article  CAS  Google Scholar 

  21. Ali F, Safdar A, Younas U, Sillanpaa M, Pervaiz M, Nazir A, Naeem M, Iqbal M, Al-Kahtani AA, Tighezza AM (2023) Kinetics of simultaneous degradation of brilliant green and methyl orange using biosynthesized high functional Ag nanoparticles. Z Phys Chem 237(4–5):599–616. https://doi.org/10.1515/zpch-2022-0098

    Article  CAS  Google Scholar 

  22. Ali F, Younas U, Nazir A, Hassan F, Iqbal M, Mukhtar S, Khalid A, Ishfaq A (2022) Biosynthesis and characterization of silver nanoparticles using strawberry seed extract and evaluation of their antibacterial and antioxidant activities. J Saudi Chem Soc 26(6):101558. https://doi.org/10.1016/j.jscs.2022.101558

    Article  CAS  Google Scholar 

  23. Mariadoss AVA, Ramachandran V, Shalini V, Agilan B, Franklin JH, Sanjay K, Alaa YG, Tawfiq MAA, Ernest D (2019) Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 135:103609. https://doi.org/10.1016/j.micpath.2019.103609

    Article  PubMed  CAS  Google Scholar 

  24. Choudhary S, Sangela V, Saxena P, Saharan V, Pugazhendhi A, Harish (2023) Recent progress in algae-mediated silver nanoparticle synthesis. Int Nano Lett 13(3–4):193–207. https://doi.org/10.1007/s40089-022-00390-0

    Article  CAS  Google Scholar 

  25. Abdelfatah AM, Fawzy M, El-Khouly ME, Eltaweil AS (2021) Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. J Saudi Chem Soc 25(12):101365. https://doi.org/10.1016/j.jscs.2021.101365

    Article  CAS  Google Scholar 

  26. Hosny M, Fawzy M, El-Fakharany EM, Omer AM, Abd El-Monaem EM, Khalifa RE, Eltaweil AS (2022) Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. J Environ Chem Eng 10(1):106806. https://doi.org/10.1016/j.jece.2021.106806

    Article  CAS  Google Scholar 

  27. Nazir A, Ali M, Alwadai N, Iqbal M, Al Huwayz M, Kausar A, Arif H, Ali A, Ashraf AR (2023) Ecofriendly green synthesis of Ag@ Cu bimetallic nanoparticles using Seidlitzia stocksii stem extract: photocatalytic degradation of methylene blue. Z Phys Chem 237(7):923–936. https://doi.org/10.1515/zpch-2022-0095

    Article  CAS  Google Scholar 

  28. Ali F, Moin-ud-Din G, Iqbal M, Nazir A, Altaf I, Alwadai N, Siddiqua UH, Younas U, Ali A, Kausar A, Ahmad N (2023) Ag and Zn doped TiO2 nano-catalyst synthesis via a facile green route and their catalytic activity for the remediation of dyes. J Mater Res Technol 23:3626–3637

    Article  CAS  Google Scholar 

  29. Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Ejikeme PM, Botha S, Ahmad I, Maaza M, Ezema FI (2019) Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater Chem Phys 237:121859. https://doi.org/10.1016/j.matchemphys.2019.121859

    Article  CAS  Google Scholar 

  30. Rolim WR, Pelegrino MT, de Araújo LB, Ferraz LS, Costa FN, Bernardes JS, Rodigues T, Brocchi M, Seabra AB (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74. https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  ADS  CAS  Google Scholar 

  31. Kora AJ, Sashidhar RB (2018) Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action. Arab J Chem 11(3):313–323. https://doi.org/10.1016/j.arabjc.2014.10.036

    Article  CAS  Google Scholar 

  32. Algotiml R, Gab-Alla A, Seoudi R, Abulreesh HH, El-Readi MZ, Elbanna K (2022) Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci Rep 12(1):2421. https://doi.org/10.1038/s41598-022-06412-3

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Taboada C, Millán R, Míguez I (2010) Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 90(3):445–449. https://doi.org/10.1002/jsfa.3836

    Article  PubMed  CAS  Google Scholar 

  34. Fleurence J, Le Coeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582. https://doi.org/10.1007/BF00003945

    Article  CAS  Google Scholar 

  35. Ventura MR, Castanon JIR, McNab JM (1994) Nutritional value of seaweed (Ulva rigida) for poultry. Anim Feed Sci Technol 49(1–2):87–92. https://doi.org/10.1016/0377-8401(94)90083-3

    Article  Google Scholar 

  36. El-Kassas HY, El Komi MM (2014) Biogenic silver nanoparticles using seaweed Ulva rigida and their fungicidal and cytotoxic effects. JKAU Mar Sci 25:3–20

    Article  Google Scholar 

  37. Rajiv P, Manikandan R, Sangeetha S, Vanathi P, Dhanasekaran S (2022) Fabrication of biogenic iron oxide and their efficiency to detect carbofuran in vegetable samples. Inorg Chem Commun 142:109649. https://doi.org/10.1016/j.inoche.2022.109649

    Article  CAS  Google Scholar 

  38. Patil S, Sivaraj R, Rajiv P, Venckatesh R, Seenivasan R (2015) Green synthesis of silver nanoparticle from leaf extract of Aegle marmelos and evaluation of its antibacterial activity. Int J Pharm Pharm Sci 7(6):169–173

    CAS  Google Scholar 

  39. Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK (2014) Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol 5:40. https://doi.org/10.1186/s40543-014-0040-3

    Article  Google Scholar 

  40. Zaheer Z (2018) Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. J Photochem Photobiol, B 178:584–592. https://doi.org/10.1016/j.jphotobiol.2017.12.002

    Article  PubMed  CAS  Google Scholar 

  41. Priya K, Vijayakumar M, Janani B (2020) Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 149:844–852. https://doi.org/10.1016/j.ijbiomac.2020.02.007

    Article  PubMed  CAS  Google Scholar 

  42. Oves M, Rauf MA, Aslam M, Qari HA, Sonbol H, Ahmad I, Zaman GS, Saeed M (2022) Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 29(1):460–471. https://doi.org/10.1016/j.sjbs.2021.09.007

    Article  PubMed  CAS  Google Scholar 

  43. Leela S, Gouthami M, Jayapriyan KR, Shenbhagaraman R (2023) Photocatalytic dye degradation potential of silver nanocomposite from exo-polysaccharide of Bacillus sp., an associative bacterium of Sargassum wightii. Indian J Sci Technol 16(47):4481–4489

    Article  CAS  Google Scholar 

  44. Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, Banciu M, Vulpoi A, Astilean S, Rai M (2015) Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids Surf, B 133:296–303. https://doi.org/10.1016/j.colsurfb.2015.06.024

    Article  CAS  Google Scholar 

  45. Algotiml R, Gab-alla A, Seoudi R, Abulreesh HH, Ahmad I, Elbanna K (2022) Anticancer and antimicrobial activity of red sea seaweeds extracts-mediated gold nanoparticles. J Pure Appl Microbiol 1(1):207–225

    Article  Google Scholar 

  46. Mahyoub JA (2021) Bioactivity of two marine algae extracts and their synthesized silver nanoparticles as safe controls against Musca domestica housefly. Entomol Res 51(7):323–330. https://doi.org/10.1111/1748-5967.12512

    Article  CAS  Google Scholar 

  47. Sahayaraj K, Rajesh S, Rathi JM (2012) Silver nanoparticles biosynthesis using marine Alga Padina Pavonica (LINN.) And it’s microbicidal activity. Digest J Nanomater Biostructures 7:4

    Google Scholar 

  48. Prasad TN, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25:177–182. https://doi.org/10.1007/s10811-012-9851-z

    Article  CAS  Google Scholar 

  49. Kingslin A, Kalimuthu K, Kiruthika ML, Khalifa AS, Nhat PT, Brindhadevi K (2023) Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract. Appl Nanosci 13:2165–2178. https://doi.org/10.1007/s13204-021-02105-x

    Article  ADS  CAS  Google Scholar 

  50. Azwatul HM, Uda MNA, Gopinath SC, Arsat ZA, Abdullah F, Muttalib MFA, Hashim MKR, Hashim U, Isa M, Uda MA, Yaakub ARW (2023) Synthesis and characterization of silver nanoparticle using sewage algal bloom extract using visual parameter analysis. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.01.004

  51. Bishoyi AK, Sahoo CR, Sahoo AP, Padhy RN (2021) Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci 11:389–398. https://doi.org/10.1007/s13204-020-01593-7

    Article  ADS  CAS  Google Scholar 

  52. Shantkriti S, Pradeep M, Unish KK, Das V, Nidhin S, Gugan K, Murugan A (2023) Bioynthesis of silver nanoparticles using Dunaliella salina and its antibacterial applications. Appl Surf Sci Adv 13:100377. https://doi.org/10.1016/j.apsadv.2023.100377

    Article  Google Scholar 

  53. Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A (2017) Seagrasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Cluster Sci 28:565–580. https://doi.org/10.1007/s10876-016-1127-3

    Article  CAS  Google Scholar 

  54. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Ajetomobi FE, Gueguim-Kana EB, Beukes LS (2015) Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci 5:196–205. https://doi.org/10.1007/s12668-015-0181-x

    Article  Google Scholar 

  55. Bhowmick S, Mazumdar A, Moulick A, Adam V (2020) Algal metabolites: an inevitable substitute for antibiotics. Biotechnol Adv 43:107571. https://doi.org/10.1016/j.biotechadv.2020.107571

    Article  PubMed  CAS  Google Scholar 

  56. Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G (2020) Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 11(1):37–44. https://doi.org/10.1016/j.jaim.2017.11.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Archana Ganeshan: investigation, original draft and project.

Dr. Rajiv Periakaruppan: conceptualization, supervision, administration.

Dr. P. Vanathi: data curation.

Dr. Selva Kumar Thirumalaisamy: data curation.

Dr. Karungan Selvaraj Vijai Selvaraj: data curation.

Dr. Dmitry Moskovskikh: data curation.

Corresponding author

Correspondence to Rajiv Periakaruppan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeshan, A., Periakaruppan, R., Vanathi, P. et al. Ulva rigida–mediated silver nanoparticles: synthesis, characterization, and antibacterial activity. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05440-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05440-5

Keywords

Navigation