Skip to main content
Log in

Effect of intermittent ball milling on high-solids enzymatic saccharification of rice straw

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The economy of the bioethanol production process can be improved by increasing the initial solid content and reducing the reaction time. The enzymatic approach utilizing intermittent ball milling has been proposed as a viable solution to tackle these challenges effectively. This study demonstrated that intermittent ball milling during high-solids enzymatic hydrolysis for a duration of 12 h showed a significantly higher total sugar yield, with an increase of 25.8% compared to continuous ball milling enzymatic hydrolysis method. The subsequent investigation comprehensively examined the impact of multi-conditional parameter variations on sugar yield during intermittent ball milling. The orthogonal experiment resulted in the determination of optimal process parameters, including a solid–liquid ratio of 25%, ball milling time (per cycle) of 5 min, ball milling frequency of 50 Hz, 6 balls used during the process, and an incubation temperature of 50℃ under optimized conditions. The conditions led to the achievement of a total reducing sugar concentration of 103.8 g/L, a total sugar yield of 415.1 mg/g, and an enzymatic hydrolysis yield of 72.4%. The optimized intermittent ball milling process exhibited superior hydrolysis yield and shorter reaction time compared to other enzymatic methods with untreated biomass. This study holds significant implications for the eventual industrialization of bioethanol refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.

References

  1. Zhang H, Han L, Dong H (2021) An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: experimental and modeling studies. Renew Sust Energ Rev 140:110758. https://doi.org/10.1016/j.rser.2021.110758

    Article  Google Scholar 

  2. Zhou Z, Lei F, Li P, Jiang J (2018) Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 115(11):2683–2702. https://doi.org/10.1002/bit.26788

    Article  CAS  PubMed  Google Scholar 

  3. Haldar D, Purkait MK (2020) Lignocellulosic conversion into value-added products: a review. Process Biochem 89:110–133. https://doi.org/10.1016/j.procbio.2019.10.001

    Article  CAS  Google Scholar 

  4. Nababan MYS, Fatriasari W, Wistara NJ (2020) Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Convers Bior 12(6):2165–2174. https://doi.org/10.1007/s13399-020-00807-w

    Article  CAS  Google Scholar 

  5. Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102:38–44. https://doi.org/10.1016/j.bej.2015.02.033

    Article  CAS  Google Scholar 

  6. Yang Y, Jalalah M, Alsareii SA, Harraz FA, Almadiy AA, Thakur N, Salama E-S (2023) Enhancement of total reducing sugar content from seaweeds (SWs) biomass via pretreatment for ethanol production: an optimized study. Biomass Convers Bior 1–12. https://doi.org/10.1007/s13399-023-05186-6

  7. Chen H, Qiu W (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562. https://doi.org/10.1016/j.biotechadv.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Gatt E, Khatri V, Bley J, Barnabe S, Vandenbossche V, Beauregard M (2019) Enzymatic hydrolysis of corn crop residues with high solid loadings: new insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour Technol 282:398–406. https://doi.org/10.1016/j.biortech.2019.03.045

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad A, Naqvi SA, Jaskani MJ, Waseem M, Ali E, Khan IA, Faisal Manzoor M, Siddeeg A, Aadil RM (2021) Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci Nutr 9(4):2066–2074. https://doi.org/10.1002/fsn3.2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329. https://doi.org/10.1002/elsc.201400199

    Article  CAS  Google Scholar 

  11. Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol - a review. Biofuel Res J 3(1):347–356. https://doi.org/10.18331/brj2016.3.1.4

  12. Chi X, Liu C, Bi YH, Yu G, Zhang Y, Wang Z, Li B, Cui Q (2019) A clean and effective potassium hydroxide pretreatment of corncob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Adv 9(20):11558–11566. https://doi.org/10.1039/c9ra01555h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yildirim O, Tunay D, Ozkaya B (2021) Optimization of enzymatic hydrolysis conditions of chemical pretreated cotton stalk using response surface methodology for enhanced bioethanol production yield. Biomass Convers Bior 13(8):6623–6634. https://doi.org/10.1007/s13399-021-01692-7

    Article  CAS  Google Scholar 

  14. Huang C, Jiang X, Shen X, Hu J, Tang W, Wu X, Ragauskas A, Jameel H, Meng X, Yong Q (2022) Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sust Energ Rev 154:111822. https://doi.org/10.1016/j.rser.2021.111822

    Article  CAS  Google Scholar 

  15. Zhou H, Tan L, Fu Y, Zhang H, Liu N, Qin M, Wang Z (2019) Rapid nondestructive fractionation of biomass (</=15 min) by using flow-through recyclable formic acid toward whole valorization of carbohydrate and lignin. Chemsuschem 12(6):1213–1221. https://doi.org/10.1002/cssc.201802803

    Article  CAS  PubMed  Google Scholar 

  16. Chu Q, Song K, Bu Q, Hu J, Li F, Wang J, Chen X, Shi A (2018) Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production. Energ Convers Manage 175:236–245. https://doi.org/10.1016/j.enconman.2018.08.100

    Article  CAS  Google Scholar 

  17. Hernández-Beltrán JU, Hernández-Escoto H (2018) Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass Bioenerg 119:191–197. https://doi.org/10.1016/j.biombioe.2018.09.020

    Article  CAS  Google Scholar 

  18. Cui M, Li X (2023) Additives Enhancing Enzymatic Hydrolysis of Wheat Straw to Obtain Fermentable Sugar. Appl Biochem Biotechnol 195(2):1059–1071. https://doi.org/10.1007/s12010-022-04200-3

    Article  CAS  PubMed  Google Scholar 

  19. Chu Q, Wang R, Tong W, Jin Y, Hu J, Song K (2020) Improving enzymatic saccharification and ethanol production from hardwood by deacetylation and steam pretreatment: insight into mitigating lignin inhibition. ACS Sustainable Chem Eng 8(49):17967–17978. https://doi.org/10.1021/acssuschemeng.0c05583

    Article  CAS  Google Scholar 

  20. Wang W, Wang X, Zhang Y, Yu Q, Tan X, Zhuang X, Yuan Z (2020) Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Ind Crop Prod 145:112145. https://doi.org/10.1016/j.indcrop.2020.112145

  21. Kadhum HJ, Mahapatra DM, Murthy GS (2019) A comparative account of glucose yields and bioethanol production from separate and simultaneous saccharification and fermentation processes at high solids loading with variable PEG concentration. Bioresour Technol 283:67–75. https://doi.org/10.1016/j.biortech.2019.03.060

    Article  CAS  PubMed  Google Scholar 

  22. Zheng T, Yang L, Ding M, Huang C, Yao J (2022) Metal-organic framework promoting high-solids enzymatic hydrolysis of untreated corncob residues. Bioresour Technol 344(Pt A):126163. https://doi.org/10.1016/j.biortech.2021.126163

    Article  CAS  PubMed  Google Scholar 

  23. Cai X, Hu CH, Wang J, Zeng XH, Luo JX, Li M, Liu ZQ, Zheng YG (2021) Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Bioresour Technol 326:124768. https://doi.org/10.1016/j.biortech.2021.124768

    Article  CAS  PubMed  Google Scholar 

  24. Tai C, Keshwani DR, Voltan DS, Kuhar PS, Engel AJ (2015) Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnol Bioeng 112(7):1376–1382. https://doi.org/10.1002/bit.25552

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Venegas M, Juaristi E (2021) Mechanoenzymology: State of the Art and Challenges towards Highly Sustainable Biocatalysis. Chemsuschem 14(13):2682–2688. https://doi.org/10.1002/cssc.202100624

    Article  CAS  PubMed  Google Scholar 

  26. Battista F, Gomez Almendros M, Rousset R, Bouillon P-A (2019) Enzymatic hydrolysis at high lignocellulosic content: Optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration. Renew Energy 131:152–158. https://doi.org/10.1016/j.renene.2018.07.038

    Article  CAS  Google Scholar 

  27. Godoy CMd, Machado DL, Costa ACd (2019) Batch and fed-batch enzymatic hydrolysis of pretreated sugarcane bagasse – Assays and modeling. Fuel 253:392–399. https://doi.org/10.1016/j.fuel.2019.05.038

    Article  CAS  Google Scholar 

  28. Al Amin Leamon AKM, Venegas MP, Orsat V, Auclair K, Dumont MJ (2022) Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural. Bioresour Technol 362:127782. https://doi.org/10.1016/j.biortech.2022.127782

    Article  CAS  PubMed  Google Scholar 

  29. Arciszewski J, Auclair K (2022) Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. Chemsuschem 15(7):e202102084. https://doi.org/10.1002/cssc.202102084

    Article  CAS  PubMed  Google Scholar 

  30. Hammerer F, Loots L, Do JL, Therien JPD, Nickels CW, Friscic T, Auclair K (2018) Solvent-Free Enzyme Activity: Quick, High-Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angew Chem Int Ed 57(10):2621–2624. https://doi.org/10.1002/anie.201711643

    Article  CAS  Google Scholar 

  31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure. NREL/TP-510-42618.

  32. Lai C, Tu M, Xia C, Shi Z, Sun S, Yong Q, Yu S (2017) Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energy Fuels 31(11):12317–12326. https://doi.org/10.1021/acs.energyfuels.7b02405

    Article  CAS  Google Scholar 

  33. Wu Y, Ge S, Xia C, Mei C, Kim K-H, Cai L, Smith LM, Lee J, Shi SQ (2021) Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renew Sust Energ Rev 136:110442. https://doi.org/10.1016/j.rser.2020.110442

  34. Tao X, Zhang P, Zhang G, Nabi M, Jin S, Wang S, Ye J, Liu X (2018) Thermo-carbide slag pretreatment of turfgrass pruning: Physical-chemical structure changes, reducing sugar production, and enzymatic hydrolysis kinetics. Energ Convers Manage 155:169–174. https://doi.org/10.1016/j.enconman.2017.10.079

    Article  CAS  Google Scholar 

  35. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings – A review. Biomass Bioenerg 56:526–544. https://doi.org/10.1016/j.biombioe.2013.05.031

    Article  CAS  Google Scholar 

  36. Chen HZ, Liu ZH (2017) Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading. Eng Life Sci 17(5):489–499. https://doi.org/10.1002/elsc.201600102

    Article  CAS  PubMed  Google Scholar 

  37. Du J, Liang J, Gao X, Liu G, Qu Y (2020) Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods. Bioresour Technol 295:122272. https://doi.org/10.1016/j.biortech.2019.122272

    Article  CAS  PubMed  Google Scholar 

  38. Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball Milling Pretreatment of Corn Stover for Enhancing the Efficiency of Enzymatic Hydrolysis. Appl Biochem Biotech 162(7):1872–1880. https://doi.org/10.1007/s12010-010-8965-5

    Article  CAS  Google Scholar 

  39. Sitotaw YW, Habtu NG, Van Gerven T (2022) Intensification of low concentration alkaline pretreatment with planetary ball milling for efficient enzymatic saccharification of enset fiber (Ensete ventricosum). Biomass Convers Bior :1-16. https://doi.org/10.1007/s13399-021-02185-3

  40. Swathy R, Rambabu K, Banat F, Ho S-H, Chu D-T, Show PL (2020) Production and optimization of high grade cellulase from waste date seeds by Cellulomonas uda NCIM 2353 for biohydrogen production. Int J Hydrogen Energ 45(42):22260–22270. https://doi.org/10.1016/j.ijhydene.2019.06.171

    Article  CAS  Google Scholar 

  41. Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741. https://doi.org/10.1007/s10570-015-0582-6

    Article  CAS  Google Scholar 

  42. dos Santos-Rocha MSR, Pratto B, Corrêa LJ, Badino AC, Almeida RMRG, Cruz AJG (2018) Assessment of different biomass feeding strategies for improving the enzymatic hydrolysis of sugarcane straw. Ind Crop Prod 125:293–302. https://doi.org/10.1016/j.indcrop.2018.09.005

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 32301723), the Postdoctoral Science Foundation of China (No.2020M671367), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB416009), the Innovation/Entrepreneurship Program of Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. PAPD-2018–87).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bo Zhang, Yuchen Xing, Guanya Ji and Tianyan You. The first draft of the manuscript was written by Bo Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guanya Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Intermittent ball milling effectively mitigated the "high-solids effect".

• The effect of conditional parameters on sugar yield was investigated.

• Optimal process parameters were obtained by orthogonal experiment.

• The hydrolysis efficiency of rice straw reached 72.4% without pretreatment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Xing, Y., Ji, G. et al. Effect of intermittent ball milling on high-solids enzymatic saccharification of rice straw. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05429-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05429-0

Keywords

Navigation