Skip to main content
Log in

Damage investigations on natural fiber-epoxy human prosthetic composites toughened using echinoidea spike β-chitin biopolymer

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research explores the human prosthetic application composites fabricated using echinoidea spike β-chitin macromolecule (ESCM) and hybrid basalt-bamboo fiber (BEBF). Three critical aspects, namely thermal stability, drop load impact resistance, and drilling performance, were investigated to assess the suitability of these composites in prosthetics. Initially, the thermal stability of the composites was examined through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Higher glass transition temperature and initial decomposition temperature were observed with increased ESCM concentration, indicating improved resistance to thermal degradation. The, EBC4 (Epoxy + Bamboo − basalt + 8 vol. % Chitin) delivered maximum Tg (Glass transition) and initial decomposition temperature. Secondly, the highest energy absorption of 17.4 J at 3 m/s and 15.2 J at 5 m/s was absorbed for composite EBC3 (Epoxy + Bamboo − basalt + 4 vol. %chitin) indicated enhanced impact resistance compared to those without β-chitin. Moreover, the EBC4 (Epoxy + Bamboo-basalt + 8 vol. % Chitin) composite outperformed in drilling properties, such as lesser roundness error for both 3- and 6-mm drills. These composites hold promise for the development of durable, high-performance prosthetic devices that can improve the quality of life for individuals with limb loss or limb impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

There is no separate data to upload separately.

References

  1. Fardan Muhammad Faris et al (2023) A review of mechanical properties and limitations. Micromachines 14(6):1165

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prabangkara, Ramadhana Luhur, and Sugeng Hadi Susilo (2023) Asian Journal Science and Engineering 2.1: 1–12.

  3. Jain Muskan, et al. (2023) Review on E-waste management and its impact on the environment and society. Waste Manag Bull

  4. Akhil UV, Radhika N, Saleh B, Aravind Krishna S, Noble N, Rajeshkumar L (2023). Polymer Composites

  5. Chandramohan, D, John Presin Kumar A (2017) Fibre reinforced composites: a promising material for artificial limp. Data-Enabled Discovery and Applications 1: 1–9.

  6. Nurhanisah MH et al. (2017) Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites: Design and Applications 127–141

  7. Medeiros S, Fernandes I, Fournier B, Nunes JC, Santos-Silva A, Ramos V, Soares D (2022) Mater Constr 72(346):e278–e278

    Article  Google Scholar 

  8. Peng Z, Zhang H, Feng Q, Zheng Y (2023) J Build Eng 76:107244

    Article  Google Scholar 

  9. Chowdhury IR, Pemberton R, Summerscales J (2022) J Compos Sci 6(12):367

    Article  CAS  Google Scholar 

  10. Kumar R, Ganguly A, Purohit R (2023) Properties and applications of bamboo and bamboo fibre composites.Mater Today: Proc

  11. Nirmal Kumar K, Dinesh Babu P, Surakasi R, Kumar PM, Ashokkumar P, Khan R ... Gebreyohannes DT (2022) Int J Polym Sci 2022.

  12. Md Nor SS, Abdul Patah MF, Mat Salleh M (2023) J Adhes Sci Technol 37(5):801–816

    Article  CAS  Google Scholar 

  13. Venkatasudhahar M, Ravichandran AT, Dilipraja N (2022) J Nat Fibers 19(13):7229–7240

    Article  CAS  Google Scholar 

  14. Ramesh Velumayil et al (2023) Influence of stacking sequence on mechanical properties of basalt/ramie biodegradable hybrid polymer composites. Polymers 15(4):985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Narayana VL, Rao LB (2023) J Nat Fibers 20(2):2213908

    Article  Google Scholar 

  16. Mahesh V (2023) Mech Adv Compos Struct 10(2):375–382

    Google Scholar 

  17. Shubham SK, Pandey A, Purohit R (2023) Investigations on mechanical properties and stacking sequence of Kevlar/banana fiber reinforced nano graphene oxide hybrid composites. Smart Materials and Structures

  18. Sathiyamurthy S, Vinoth V, Ananthi N, Devi P (2023) Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089231165943.

  19. Temiz Melisa, Suheyla Kocaman, Gulnare Ahmetli (2023) J Ind Eng Chem

  20. Perumal, K. S., Selvarajan, L., Manikandan, K. P., & Velmurugan, C. (2023). J Mech Behav Biomed Mater 106095.

  21. Tan HW, Lim ZYJ, Muhamad NA, Liew FF (2022) J Renew Mater 10(4):909

    Article  CAS  Google Scholar 

  22. Wang Yilin et al. (2023) Bilirubin removal by polymeric adsorbents for hyperbilirubinemia therapy. Macromol Biosci 2200567

  23. Gao K, Qin Y, Liu S, Wang L, Xing R, Yu H ... Li P (2023). Carbohydr Polym Technol Appl 100296.

  24. Arun Prakash VR, Viswanathan R (2019) Int J Plast Technol 23:207–217

    Article  CAS  Google Scholar 

  25. Hamil S, Baha M, Abdi A, Alili M, Bilican BK, Yilmaz BA ... Kaya M (2020) Int J Biol Macromol 152 102-108

  26. Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y ... Liu C (2021) Int J Biol Macromol 184 170-180

  27. Rajabiyan A, Shakiba Maram N, Ghatrami ER, Zarei Ahmady A (2021) Main Group Chem 20(4):447–461

    Article  CAS  Google Scholar 

  28. Jana S, Gandhi A, Sen KK (2024) Green composites reinforced with chitin and chitosan. In Green micro-and nanocomposites (pp. 113–142). Jenny Stanford Publishing

  29. Zhang, Wei, et al. (2023) Int J Mol Sci 24.10: 8519

  30. Ekpechi DA, Obiukwu OO, Nwankwo EI, Okpalaku-Nath VC (2023) Asian J Agric Allied Sci 15(1) 6-16

  31. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  ADS  Google Scholar 

  32. Pakizeh M, Moradi A, Ghassemi T (2021) Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur Polymer J 159:110709

    Article  CAS  Google Scholar 

  33. Sun B, Zhao X, Xu B, Su E, Kovalevsky A, Shen Q ... Wan Q (2023) ACS Sustain Chem Eng 11(12) 4690-4698

  34. Hu S, Jin M, Xu Y, Wu Q, Jiang Q, Ma J ... Xu Q (2023) Deacetylation of chitin oligomers by Fusarium graminearum polysaccharide deacetylase suppresses plant immunity. Mol Plant Pathol

  35. Jung S, Kim J, Bang J, Jung M, Park S, Yun H, Kwak HW (2023) pH-sensitive cellulose/chitin nanofibrillar hydrogel for dye pollutant removal. Carbohyd Polym 317:121090

    Article  CAS  Google Scholar 

  36. Zin MIM, Jimat DN, Nawawi WMFW (2022) Physicochemical properties of fungal chitin nanopaper from shiitake (L. edodes), enoki (F. velutipes) and oyster mushrooms (P. ostreatus). Carbohydr Polym 281:119038

    Article  Google Scholar 

  37. Egbujuo WO, Anyanwu PI, Obasi HC (2020) Utilization of chitin powder as a filler in natural rubber vulcanizates: in comparison with carbon black filler. Int Rev Appl Sci Eng

  38. Pietraccini, M., Badu, P., Tait, T., Glaude, P. A., Dufour, A., &Dufaud O (2023) Process Saf Environ Prot 169 458-471

  39. Dutta H (2023) Potential of polysaccharide nanoparticles in foods. Nanotechnol Horizons Food Process Eng 85–155

  40. Bisht M, Macário IP, Neves MC, Pereira JL, Pandey S, Rogers RD ... Ventura SP (2021) ACS Sustain Chem Eng 9(48) 16073–16081

  41. Emerson T, Souchong L, Sigerson J, Davenport F, Archibald P. Follow/fav effects of chitin doping on common materials

  42. Huang W, Montroni D, Wang T, Murata S, Arakaki A, Nemoto M, Kisailus D (2022) Acc Chem Res 55(10):1360–1371

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

“Authors would like to acknowledge the support of the Deputy for Research and Innovation- Ministry of Education, Kingdom of Saudi Arabia for this research through a grant (NU/IFC/ 2/SERC/-/38) under the Institutional Funding Committee at Najran University, Kingdom of Saudi Arabia.”

Author information

Authors and Affiliations

Authors

Contributions

Mohammad K. A. Khan, M. Faisal—research work and drafting of manuscript.

Arun Prakash VR—testing support.

Corresponding author

Correspondence to V. R. Arun Prakash.

Ethics declarations

Ethics approval and consent to participate

NA

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.K.A., Faisal, M. & Arun Prakash, V.R. Damage investigations on natural fiber-epoxy human prosthetic composites toughened using echinoidea spike β-chitin biopolymer. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05421-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05421-8

Keywords

Navigation