Skip to main content
Log in

Sargassum delignification: a first step to mitigate the socio-economic and environmental impacts in the Caribbean through its sustainable exploitation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Massive blooms of pelagic Sargassum in Caribbean shores cause several economic and environmental affectations. Their industrial exploitation could help to mitigate the negative impacts associate with their accumulation; however, their utilization had been limited due the presence of a recalcitrant polyphenolic net (lignin). So, this study was focused on the development of a treatment with mild operation conditions which reduce the lignin content facilitating the production of value-added compounds under a zero-waste scheme. The treatment was carried out with hydrogen peroxide (H2O2) as oxidant reagent; it is cheaper than other reagents and during their reaction, the only products are oxygen and water; their concentration and retention time were evaluated achieving delignification yields from 30.72 to 75.43%. The best conditions for Sargassum delignification were 3 h and 10% (v/v) of H2O2. Infrared specters and thermogravimetrical analysis confirmed the remotion of the recalcitrant material. As well, micrographs obtained by the scanning electronic micrograph prove that the treatment removes the layer which covers the carbohydrates matrix. The industrial applications of the oxidative process could help to turn the Sargassum crisis into an opportunity, contributing to the mitigation of the environmental and socioeconomic impacts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The original contributions presented in the study are included in the article. Further inquiries can be directed to the corresponding author.

References

  1. López Miranda JL, Celis LB, Estévez M et al (2021) Commercial potential of pelagic Sargassum spp. in Mexico. Front Mar Sci 8:768470

    Article  Google Scholar 

  2. Oxenford HA, Cox S-A, van Tussenbroek BI, Desrochers A (2021) Challenges of turning the Sargassum crisis into gold: current constraints and implications for the Caribbean. Phycology 1:27–48

    Article  Google Scholar 

  3. Lopresto CG, Paletta R, Filippelli P et al (2022) Sargassum invasion in the caribbean: an opportunity for coastal communities to produce bioenergy based on biorefinery—an overview. Waste Biomass Valoriz 1–25

  4. Rodríguez-Martínez RE, Torres-Conde EG, Jordán-Dahlgren E (2023) Pelagic Sargassum cleanup cost in Mexico. Ocean Coast Manag 237:106542

    Article  Google Scholar 

  5. Thompson TM, Young BR, Baroutian S (2020) Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery. Fuel 279:118527. https://doi.org/10.1016/j.fuel.2020.118527

    Article  Google Scholar 

  6. Amador-Castro F, García-Cayuela T, Alper HS et al (2021) Valorization of pelagic sargassum biomass into sustainable applications: current trends and challenges. J Environ Manage 283:112013

    Article  Google Scholar 

  7. López-Contreras AM, Van Der Geest M, Deetman B et al (2021) Opportunities for valorisation of pelagic Sargassum in the Dutch Caribbean

  8. Desrochers A, Shelly-Ann Cox HAO, van Tussenbroek B (2020) Sargassum uses guide: a resource for Caribbean researchers, entrepreneurs and policy makers. University of the West Indies, Cave Hill Campus

    Google Scholar 

  9. Milledge JJ, Harvey PJ (2016) Golden tides: problem or golden opportunity? The valorisation of Sargassum from beach inundations. J Mar Sci Eng 4:60

    Article  Google Scholar 

  10. Periyasamy S, Isabel JB, Kavitha S et al (2023) Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol–a review. Chem Eng J 453:139783

    Article  Google Scholar 

  11. Orozco-González JG, Amador-Castro F, Gordillo-Sierra AR et al (2022) Opportunities surrounding the use of Sargassum biomass as precursor of biogas, bioethanol, and biodiesel production. Front Mar Sci 8:791054

    Article  Google Scholar 

  12. Alves T, Silva L, Dário H, Zamora Z (2018) Effect of steam explosion pretreatment catalysed by organic acid and alkali on chemical and structural properties and enzymatic hydrolysis of sugarcane bagasse. Waste Biomass Valor 9:2191–2201. https://doi.org/10.1007/s12649-017-9989-7

    Article  Google Scholar 

  13. Karp SG, Woiciechowski AL, Soccol VT, Soccol CR (2013) Pretreatment strategies for delignification of sugarcane bagasse: a review. Brazilian Arch Biol Technol 56:679–689. https://doi.org/10.1590/S1516-89132013000400019

    Article  Google Scholar 

  14. Thompson TM, Young BR, Baroutian S (2019) Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol 195:106151. https://doi.org/10.1016/j.fuproc.2019.106151

    Article  Google Scholar 

  15. del Río PG, Domínguez E, Domínguez VD et al (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735

    Article  Google Scholar 

  16. Supattra M, Milledge J, Nielsen B, Harvey P (2018) A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 4. https://doi.org/10.3390/fermentation4040100

  17. del Río PG, Gullón B, Pérez-Pérez A, et al (2021) Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme. Bioresour Technol 340. https://doi.org/10.1016/j.biortech.2021.125733

  18. Biswas B, Fernandes AC, Kumar J et al (2018) Valorization of Sargassum tenerrimum: value addition using hydrothermal liquefaction. Fuel 222:394–401

    Article  Google Scholar 

  19. Aparicio E, Rodríguez-Jasso RM, Pinales-Márquez CD et al (2021) High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour Technol 329:1–10. https://doi.org/10.1016/j.biortech.2021.124935

    Article  Google Scholar 

  20. Milledge JJ, Nielsen BV, Harvey PJ (2018) The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J Appl Phycol 31:779–786. https://doi.org/10.1007/s10811-018-1512-4

    Article  Google Scholar 

  21. Yuhendra AP, Farghali M, Mohamed IMA et al (2021) Potential of biogas production from the anaerobic digestion of Sargassum fulvellum macroalgae: influences of mechanical, chemical, and biological pretreatments. Biochem Eng J 175:108140

    Article  Google Scholar 

  22. Teong SP, Li X, Zhang Y (2019) Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chem 21:5753–5780

    Article  Google Scholar 

  23. Roy R, Rahman MS, Amit TA, Jadhav B (2022) Recent advances in lignin depolymerization techniques: a comparative overview of traditional and greener approaches. Biomass 2:130–154

    Article  Google Scholar 

  24. Junghans U, Bernhardt JJ, Wollnik R et al (2020) Valorization of lignin via oxidative depolymerization with hydrogen peroxide: towards carboxyl-rich oligomeric lignin fragments. Molecules 25:2717

    Article  Google Scholar 

  25. Tocco D, Carucci C, Monduzzi M et al (2021) Recent developments in the delignification and exploitation of grass lignocellulosic biomass. ACS Sustain Chem Eng 9:2412–2432. https://doi.org/10.1021/acssuschemeng.0c07266

    Article  Google Scholar 

  26. Sun RC, Fang JM, Tomkinson J (2000) Delignification of rye straw using hydrogen peroxide. Ind Crops Prod 12:71–83

    Article  Google Scholar 

  27. Rosellón-Druker J, Calixto-Pérez E, Escobar-Briones E et al (2022) A review of a decade of local projects, studies and initiatives of atypical influxes of pelagic Sargassum on Mexican Caribbean coasts. Phycology 2:254–279

    Article  Google Scholar 

  28. Sun R, Tomkinson J, Wang S, Zhu W (2000) Characterization of lignins from wheat straw by alkaline peroxide treatment. Polym Degrad Stab 67:101–109. https://doi.org/10.1016/S0141-3910(99)00099-3

    Article  Google Scholar 

  29. Sluiter A, Hames B, Ruiz R et al (2008) Determination of ash in biomass. NREL/TP-510-42622Lab Anal Proced 36:302–305

    Google Scholar 

  30. Sluiter A, Hames B, Ruiz R et al (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Proced 1617:1–16

    Google Scholar 

  31. Azcorra-May KJ, Olguin-Maciel E, Domínguez-Maldonado J et al (2022) Sargassum biorefineries: potential opportunities towards shifting from wastes to products. Biomass Convers Biorefinery 1–9

  32. Fernández F, Boluda CJ, Olivera J et al (2017) Prospective elemental analysis of algal biomass accumulated at the Dominican Republic shores during 2015. Cent Azucar 44:11–22

    Google Scholar 

  33. Alves E, Lucas GC, Pozza EA, de Carvalho Alves M (2013) Scanning electron microscopy for fungal sample examination. Lab Protoc Fungal Biol Curr Methods Fungal Biol 133–150

  34. Sokal RR, Rohlf FJ (1987) Biostatistics. Fr Co, New York, p 10

    Google Scholar 

  35. Alzate-Gaviria L, Domínguez-Maldonado J, Chablé-Villacís R et al (2021) Presence of polyphenols complex aromatic “Lignin” in Sargassum spp. from Mexican Caribbean. J Mar Sci Eng 9:1–10. https://doi.org/10.3390/jmse9010006

    Article  Google Scholar 

  36. Bonilla Loaiza AM, Rodríguez-Jasso RM, Belmares R et al (2022) Fungal proteins from Sargassum spp. using solid-state fermentation as a green bioprocess strategy. Molecules 27:3887

    Article  Google Scholar 

  37. Selvakumar P, Kavitha S, Sivashanmugam P (2019) Optimization of process parameters for efficient bioconversion of thermo-chemo pretreated Manihot esculenta Crantz YTP1 stem to ethanol. Waste and Biomass Valorization 10:2177–2191

    Article  Google Scholar 

  38. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495. https://doi.org/10.1016/j.indcrop.2012.10.005

    Article  Google Scholar 

  39. More A, Elder T, Jiang Z (2021) A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung 75:806–823

    Article  Google Scholar 

  40. Dymnikova NS, Erokhina EV (2021) Oxidative degradation of lignin-containing flax Impurities. Russ J Gen Chem 91:2627–2632

    Article  Google Scholar 

  41. Coração ACDS, Santos FS Dos, Duarte JAD, et al (2020) What do we know about the utilization of the Sargassum species as biosorbents of trace metals in Brazil? J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.103941

  42. Kavitha S, Gajendran T, Saranya K et al (2021) Study on consolidated bioprocessing of pre-treated Nannochloropsis gaditana biomass into ethanol under optimal strategy. Renew Energy 172:440–452

    Article  Google Scholar 

  43. Chandra Rajak R, Banerjee R (2015) Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv 5:75281–75291. https://doi.org/10.1039/c5ra09667g

    Article  Google Scholar 

  44. Antúnez-Argüelles E, Herrera-Bulnes M, Torres-Ariño A et al (2020) Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from Tetraselmis gracilis. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 55:739–747. https://doi.org/10.1080/10934529.2020.1738171

    Article  Google Scholar 

  45. López-Miranda JL, Esparza R, González-Reyna MA et al (2021) Sargassum influx on the Mexican Coast: a source for synthesizing silver nanoparticles with catalytic and antibacterial properties. Appl Sci 11:4638

    Article  Google Scholar 

  46. El Atouani S, Bentiss F, Reani A et al (2016) The invasive brown seaweed Sargassum muticum as new resource for alginate in Morocco: spectroscopic and rheological characterization. Phycol Res 64:185–193. https://doi.org/10.1111/pre.12135

    Article  Google Scholar 

  47. Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J 10:85–96

    Google Scholar 

  48. Venturin B, Frumi Camargo A, Scapini T et al (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124. https://doi.org/10.1016/j.biortech.2018.06.069

    Article  Google Scholar 

  49. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  50. Burhenne L, Messmer J, Aicher T, Laborie M-P (2013) The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrolysis 101:177–184

    Article  Google Scholar 

  51. López-Sosa LB, Alvarado-Flores JJ, Corral-Huacuz JC et al (2020) A prospective study of the exploitation of pelagic Sargassum spp. as a solid biofuel energy source. Appl Sci 10:1–17. https://doi.org/10.3390/app10238706

    Article  Google Scholar 

  52. Tobio-Perez I, Alfonso-Cardero A, Diaz-Dominguez Y et al (2022) Thermochemical conversion of Sargassum for energy production: a comprehensive review. BioEnergy Res 1–22

  53. Paraguay-Delgado F, Carreño-Gallardo C, Estrada-Guel I, et al (2020) Pelagic Sargassum spp. capture CO2 and produce calcite. Environ Sci Pollut Res 1–7. https://doi.org/10.1007/s11356-020-08969-w

  54. Vázquez-Delfín E, Freile-Pelegrín Y, Salazar-Garibay A, et al. (2021) Species composition and chemical characterization of Sargassum influx at six different locations along the Mexican Caribbean coast. Sci Total Environ 795. https://doi.org/10.1016/j.scitotenv.2021.148852

  55. Milledge JJ, Maneein S, Arribas E, Bartlett D (2020) Sargassum inundations in Turks and Caicos : methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies 13:1523

    Article  Google Scholar 

  56. Machado CB, Maddix G-M, Francis P et al (2022) Pelagic Sargassum events in Jamaica: Provenance, morphotype abundance, and influence of sample processing on biochemical composition of the biomass. Sci Total Environ 152761

  57. Nielsen BV, Milledge JJ, Hertler H et al (2021) Chemical characterisation of Sargassum inundation from the Turks and Caicos: seasonal and post stranding changes. Phycology 1:143–162

    Article  Google Scholar 

  58. Olguin-Maciel E, Leal-Bautista RM, Alzate-Gaviria L et al (2022) Environmental impact of Sargassum spp. landings: an evaluation of leachate released from natural decomposition at Mexican Caribbean coast. Environ Sci Pollut Res 1–10

  59. Tonon T, Machado CB, Webber M et al (2022) Biochemical and elemental composition of pelagic sargassum biomass harvested across the Caribbean. Phycology 2:204–215

    Article  Google Scholar 

  60. Selvakumar P, Karthik V, Kumar PS et al (2021) Enhancement of ultrasound assisted aqueous extraction of polyphenols from waste fruit peel using dimethyl sulfoxide as surfactant: assessment of kinetic models. Chemosphere 263:128071

    Article  Google Scholar 

  61. Ortega-Flores PA, Serviere-Zaragoza E, De Anda-Montañez JA et al (2022) Trace elements in pelagic Sargassum species in the Mexican Caribbean: identification of key variables affecting arsenic accumulation in S. fluitans. Sci Total Environ 806:150657

    Article  Google Scholar 

  62. Davis D, Simister R, Campbell S et al (2021) Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci Total Environ 762:143134

  63. Rodríguez-Martínez RE, Roy PD, Torrescano-Valle N et al (2020) Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. PeerJ 2020:1–19. https://doi.org/10.7717/peerj.8667

    Article  Google Scholar 

  64. Ardalan Y, Jazini M, Karimi K (2018) Sargassum angustifolium brown macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. Algal Res 29–36. https://doi.org/10.1016/j.algal.2018.10.010

Download references

Acknowledgements

The authors want to thank Santiago Duarte Aranda for their technical assistance on the FT-IR and thermogravimetrical analysis.

Funding

This work was supported by the fellowship 991055 from the National Council for Humanity Science and Technology (CONAHCYT) of Mexico.

Author information

Authors and Affiliations

Authors

Contributions

Karla J. Azcorra-May: methodology, formal analysis, investigation, writing—original draft preparation and visualization; Edgar Olguin-Maciel: writing—original draft preparation and visualization; Rosa Maria Leal-Bautista: resources, writing—review and editing; Gonzalo Canche-Escamilla: resources, writing—review and editing; Liliana Alzate-Gaviria: writing—review and editing; Tanit Toledano-Thompson: validation; Raul Tapia-Tussell: conceptualization, writing—original draft preparation, visualization, and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Raul Tapia-Tussell.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azcorra-May, K.J., Olguin-Maciel, E., Leal-Bautista, R.M. et al. Sargassum delignification: a first step to mitigate the socio-economic and environmental impacts in the Caribbean through its sustainable exploitation. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05158-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05158-w

Keywords

Navigation