Skip to main content
Log in

Adsorption characteristics of ciprofloxacin and naproxen from aqueous solution using bamboo biochar

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Adsorption of the drugs ciprofloxacin (CFX) and naproxen (NPX) using bamboo biochar was systematically investigated. Bamboo biochar was characterized by SEM, TEM, FT-IR, BET, and ζ measurement. Bamboo biochar has a porous structure with high specific surface area and contains carboxyl groups with negative charge. Batch adsorption of CFX on bamboo biochar was optimal at pH 4, 7.5 g/L adsorbent dosage, and adsorbed in 90 min while the best conditions for NPX adsorption were pH 3, with 10 g/L and contact time 90 min. Adsorption isotherms of CFX and NPX on bamboo biochar surface at different ionic strengths were achieved with Freundlich better than Langmuir. Adsorption of CFX and NPX on bamboo biochar is controlled by electrostatic and non-electrostatics, while NPX adsorption is mainly controlled by electrostatic interactions. The CFX and NPX removal efficiencies were still greater than 60% after four regenerations, indicating that bamboo biochar is an excellent adsorbent for pharmaceutical contaminants removal in water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and materials in this study are included in this article.

References

  1. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  Google Scholar 

  2. Xiang W, Zhang X, Chen J, Zou W, He F, Hu X et al (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539. https://doi.org/10.1016/j.chemosphere.2020.126539

    Article  Google Scholar 

  3. Tomul F, Arslan Y, Kabak B, Trak D, Kendüzler E, Lima EC et al (2020) Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ 726:137828. https://doi.org/10.1016/j.scitotenv.2020.137828

    Article  Google Scholar 

  4. Srivastav AL, Pham TD, Izah SC, Singh N, Singh PK (2022) Biochar adsorbents for arsenic removal from water environment: a review. Bull Environ Contam Toxicol 108(4):616–628. https://doi.org/10.1007/s00128-021-03374-6

    Article  Google Scholar 

  5. Chen T, Luo L, Deng S, Shi G, Zhang S, Zhang Y et al (2018) Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Biores Technol 267:431–437. https://doi.org/10.1016/j.biortech.2018.07.074

    Article  Google Scholar 

  6. Greiner BG, Shimabuku KK, Summers RS (2018) Influence of biochar thermal regeneration on sulfamethoxazole and dissolved organic matter adsorption. Environ Sci: Water Res Technol 4(2):169–174. https://doi.org/10.1039/C7EW00379J

    Article  Google Scholar 

  7. Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S (2020) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-03060-w

    Article  Google Scholar 

  8. Rosales E, Meijide J, Pazos M, Sanromán MA (2017) Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Biores Technol 246:176–192. https://doi.org/10.1016/j.biortech.2017.06.084

    Article  Google Scholar 

  9. Cui X, Hao H, Zhang C, He Z, Yang X (2016) Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Sci Total Environ 539:566–575. https://doi.org/10.1016/j.scitotenv.2015.09.022

    Article  Google Scholar 

  10. Zhang C, Sun S, Xu S, Johnston C, Wu C (2022) Phosphorus removal from dirty farmyard water by activated anaerobic-digestion-derived biochar. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.2c02668

    Article  Google Scholar 

  11. Thotagamuge R, Kooh MRR, Mahadi AH, Lim CM, Abu M, Jan A et al (2021) Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environmental Nanotechnology, Monitoring & Management 16:100562. https://doi.org/10.1016/j.enmm.2021.100562

    Article  Google Scholar 

  12. Zhang C, Ji Y, Li C, Zhang Y, Sun S, Xu Y et al (2023) The application of biochar for CO2 capture: influence of biochar preparation and CO2 capture reactors. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.3c00445

    Article  Google Scholar 

  13. Zubair M, Aziz HA, Ihsanullah I, Ahmad MA, Al-Harthi MA (2022) Engineered biochar supported layered double hydroxide-cellulose nanocrystals composite-: synthesis, characterization and azo dye removal performance. Chemosphere 307:136054. https://doi.org/10.1016/j.chemosphere.2022.136054

    Article  Google Scholar 

  14. Vigneshwaran S, Sirajudheen P, Nikitha M, Ramkumar K, Meenakshi S (2021) Facile synthesis of sulfur-doped chitosan/biochar derived from tapioca peel for the removal of organic dyes: isotherm, kinetics and mechanisms. J Mol Liq 326:115303. https://doi.org/10.1016/j.molliq.2021.115303

    Article  Google Scholar 

  15. Suhaimi N, Kooh MRR, Lim CM, Chou Chao C-T, Chou Chau Y-F, Mahadi AH et al (2022) The use of gigantochloa bamboo-derived biochar for the removal of methylene blue from aqueous solution. Adsorpt Sci Technol 2022:8245797. https://doi.org/10.1155/2022/8245797

    Article  Google Scholar 

  16. Masanizan A, Lim CM, Kooh MRR, Mahadi AH, Thotagamuge R (2021) The removal of ruthenium-based complexes N3 dye from DSSC wastewater using copper impregnated KOH-activated bamboo charcoal. Water Air Soil Pollut 232(9):388. https://doi.org/10.1007/s11270-021-05333-7

    Article  Google Scholar 

  17. Kooh MRR, Thotagamuge R, Chou Chau Y-F, Mahadi AH, Lim CM (2022) Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J Taiwan Inst Chem Eng 132:104134. https://doi.org/10.1016/j.jtice.2021.11.001

    Article  Google Scholar 

  18. Khataee A, Kayan B, Kalderis D, Karimi A, Akay S, Konsolakis M (2017) Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason Sonochem 35:72–80. https://doi.org/10.1016/j.ultsonch.2016.09.004

    Article  Google Scholar 

  19. Jia M, Wang F, Bian Y, Jin X, Song Y, Kengara FO et al (2013) Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Biores Technol 136:87–93. https://doi.org/10.1016/j.biortech.2013.02.098

    Article  Google Scholar 

  20. Dinh TD, Phan MN, Nguyen DT, Le TMD, Nadda AK, Srivastav AL et al (2022) Removal of beta-lactam antibiotic in water environment by adsorption technique using cationic surfactant functionalized nanosilica rice husk. Environ Res 210:112943. https://doi.org/10.1016/j.envres.2022.112943

    Article  Google Scholar 

  21. Njoku DI, Li B, Khan MS, Chinonso UP, Njoku CN, Onyeachu IB et al (2021) Quadruple-action coatings provided by doping epoxy with inhibitor laden clay nanotubes functionalized with layer-by-layer of cross-bridged chitosan and anionic polyelectrolytes. Prog Org Coat 157:106312. https://doi.org/10.1016/j.porgcoat.2021.106312

    Article  Google Scholar 

  22. Keyikoğlu R, Khataee A, Orooji Y (2023) Degradation of emerging pollutants on bifunctional ZnFeV LDH@ graphite felt cathode through prominent catalytic activity in heterogeneous electrocatalytic processes. J Environ Manage 342:118090. https://doi.org/10.1016/j.jenvman.2023.118090

    Article  Google Scholar 

  23. Sahoo SS, Vijay VK, Chandra R, Kumar H (2021) Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology 3:100101. https://doi.org/10.1016/j.clet.2021.100101

    Article  Google Scholar 

  24. Liao P, Zhan Z, Dai J, Wu X, Zhang W, Wang K et al (2013) Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study. Chem Eng J 228:496–505. https://doi.org/10.1016/j.cej.2013.04.118

    Article  Google Scholar 

  25. Kalderis D, Seifi A, Kieu Trang T, Tsubota T, Anastopoulos I, Manariotis I et al (2023) Bamboo-derived adsorbents for environmental remediation: a review of recent progress. Environ Res 224:115533. https://doi.org/10.1016/j.envres.2023.115533

    Article  Google Scholar 

  26. Ji Y, Zhang C, Zhang XJ, Xie PF, Wu C, Jiang L (2022) A high adsorption capacity bamboo biochar for CO2 capture for low temperature heat utilization. Sep Purif Technol 293:121131. https://doi.org/10.1016/j.seppur.2022.121131

    Article  Google Scholar 

  27. Sharma PC, Jain A, Jain S, Pahwa R, Yar MS (2010) Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem 25(4):577–589. https://doi.org/10.3109/14756360903373350

    Article  Google Scholar 

  28. Zhang C-L, Qiao G-L, Zhao F, Wang Y (2011) Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq 163(1):53–56. https://doi.org/10.1016/j.molliq.2011.07.005

    Article  Google Scholar 

  29. Chen J, Zhang Z, Lei Z, Shimizu K, Yao P, Su Z et al (2020) Occurrence and distribution of antibiotic resistance genes in the coastal sediments of effluent-receiving areas of WWTPs China. Bioresource Technol Rep 11:100511. https://doi.org/10.1016/j.biteb.2020.100511

    Article  Google Scholar 

  30. Vu TN, Le PHP, Pham DNP, Hoang TH, Nadda AK, Le TS et al (2022) Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants. Chemosphere 307:135856. https://doi.org/10.1016/j.chemosphere.2022.135856

    Article  Google Scholar 

  31. Duan W, Wang N, Xiao W, Zhao Y, Zheng Y (2018) Ciprofloxacin adsorption onto different micro-structured tourmaline, halloysite and biotite. J Mol Liq 269:874–881. https://doi.org/10.1016/j.molliq.2018.08.051

    Article  Google Scholar 

  32. Staudt J, Scheufele FB, Ribeiro C, Sato TY, Canevesi R, Borba CE (2020) Ciprofloxacin desorption from gel type ion exchange resin: desorption modeling in batch system and fixed bed column. Sep Purif Technol 230:115857. https://doi.org/10.1016/j.seppur.2019.115857

    Article  Google Scholar 

  33. Wang W, Cheng J, Jin J, Zhou Q, Ma Y, Zhao Q et al (2016) Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins. Sci Rep 6(1):30331. https://doi.org/10.1038/srep30331

    Article  Google Scholar 

  34. Gu C, Karthikeyan KG (2005) Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ Sci Technol 39(23):9166–9173. https://doi.org/10.1021/es051109f

    Article  Google Scholar 

  35. Lin C-C, Lee C-Y (2020) Adsorption of ciprofloxacin in water using Fe3O4 nanoparticles formed at low temperature and high reactant concentrations in a rotating packed bed with co-precipitation. Mater Chem Phys 240:122049. https://doi.org/10.1016/j.matchemphys.2019.122049

    Article  Google Scholar 

  36. Nguyen NT, Dao TH, Truong TT, Nguyen TMT, Pham TD (2020) Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticles with surface modification by polyanion. J Mol Liq 309:113150. https://doi.org/10.1016/j.molliq.2020.113150

    Article  Google Scholar 

  37. Chandrasekaran A, Patra C, Narayanasamy S, Subbiah S (2020) Adsorptive removal of ciprofloxacin and amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Environ Res 188:109825. https://doi.org/10.1016/j.envres.2020.109825

    Article  Google Scholar 

  38. Oomori S, Toma Y, Nagata O, Ueno H (2016) Effects of bamboo biochar application on global warming in paddy fields in Ehime prefecture, Southern Japan. Soil Sci Plant Nutr 62(5–6):553–560. https://doi.org/10.1080/00380768.2016.1235961

    Article  Google Scholar 

  39. Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309(2):194–224

    Article  Google Scholar 

  40. Langmuir IJJotACs (1918) The adsorption of gases on plane surfaces of glass, mica and platinum 40(9):1361–403

  41. Freundlich HJZfpC (1907) Über die adsorption in lösungen 57(1):385–470

  42. F FHM (1906) Über die adsorption in Lösungen. Z Phys Chem 57A:385

  43. I. L (1961) The constitution and fundamental properties of solids and liquids—part I: solids. J Am Chem Soc 38:2221

  44. Zuorro A, Maffei G, Lavecchia R (2017) Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica. J Environ Chem Eng 5(4):4121–4127. https://doi.org/10.1016/j.jece.2017.07.078

    Article  Google Scholar 

  45. Sahoo SS, Vijay VK, Chandra R, Kumar HJCE (2021) Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Technology 3:100101

    Google Scholar 

  46. Barrett EP, Joyner LG, Halenda PPJJOTACS (1951) The determination of pore volume and area distributions in porous substances. I. Comput Nitrogen Isotherms 73(1):373–80

    Google Scholar 

  47. Janu R, Mrlik V, Ribitsch D, Hofman J, Sedláček P, Bielská L et al (2021) Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour Convers 4:36–46

    Article  Google Scholar 

  48. He S, Wu L, Zeng Y, Jia B, Liang L (2022) Preparation of Ce-Ag bimetallic modified biochar composite for the efficient removal of sulfathiazole and its mechanism. Mater Today Commun 33:104577. https://doi.org/10.1016/j.mtcomm.2022.104577

    Article  Google Scholar 

  49. Xiong J, Xu J, Zhou M, Zhao W, Chen C, Wang M et al (2021) Quantitative characterization of the site density and the charged state of functional groups on biochar 9(6):2600–8

  50. Angiolillo DJ, Weisman SM (2017) Clinical pharmacology and cardiovascular safety of naproxen. Am J Cardiovasc Drugs 17(2):97–107. https://doi.org/10.1007/s40256-016-0200-5

    Article  Google Scholar 

  51. Chen B, Chen Z, LvSJBt (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate 102(2):716–23

  52. Sun K, Kang M, Zhang Z, Jin J, Wang Z, Pan Z et al (2013) Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene 47(20):11473–81

  53. Lyu P, Li L, Huang X, Wang G, Zhu C (2022) Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: high-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification. Sci Total Environ 823:153743. https://doi.org/10.1016/j.scitotenv.2022.153743

    Article  Google Scholar 

  54. Lyu P, Wang G, Wang B, Yin Q, Li Y, Deng N (2021) Adsorption and interaction mechanism of uranium (VI) from aqueous solutions on phosphate-impregnation biochar cross-linked MgAl layered double-hydroxide composite. Appl Clay Sci 209:106146. https://doi.org/10.1016/j.clay.2021.106146

    Article  Google Scholar 

  55. Huang W-H, Wu R-M, Chang J-S, Juang S-Y, Lee D-J (2022) Pristine and manganese ferrite modified biochars for copper ion adsorption: type-wide comparison. Biores Technol 360:127529. https://doi.org/10.1016/j.biortech.2022.127529

    Article  Google Scholar 

  56. Yao H, Lu J, Wu J, Lu Z, Wilson PC, Shen YJW, Air et al (2013) Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source 224(1):1–9

  57. YalÇin M, GÜrses A, Doğar Ç, SÖZBİLİr MJA (2005) The adsorption kinetics of cethyltrimethylammonium bromide (CTAB) onto powdered active carbon. 10(4):339–48

  58. Al-Khateeb LA, Hakami W, Salam MA (2017) Removal of non-steroidal anti-inflammatory drugs from water using high surface area nanographene: kinetic and thermodynamic studies. J Mol Liq 241:733–741. https://doi.org/10.1016/j.molliq.2017.06.068

    Article  Google Scholar 

  59. Husein DZ, Hassanien R, Al-Hakkani MF (2019) Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon. 5(8):e02339. https://doi.org/10.1016/j.heliyon.2019.e02339

    Article  Google Scholar 

  60. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44(9):3468–3473. https://doi.org/10.1021/es903490h

    Article  Google Scholar 

  61. Hu D, Wang L (2016) Adsorption of ciprofloxacin from aqueous solutions onto cationic and anionic flax noil cellulose. Desalin Water Treat 57(58):28436–28449. https://doi.org/10.1080/19443994.2016.1183232

    Article  Google Scholar 

  62. Zhao P, Yu F, Wang R, Ma Y, Wu Y (2018) Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater. Chemosphere 200:612–620. https://doi.org/10.1016/j.chemosphere.2018.02.157

    Article  Google Scholar 

  63. Wu S, Zhao X, Li Y, Zhao C, Du Q, Sun J et al (2013) Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J 230:389–395. https://doi.org/10.1016/j.cej.2013.06.072

    Article  Google Scholar 

  64. Bala S, Abdullah CAC, Tahir MIM, Abdul Rahman MB (2022) Adsorptive removal of naproxen from water using polyhedral oligomeric silesquioxane (POSS) covalent organic frameworks (COFs). Nanomaterials 12(14):2491

    Article  Google Scholar 

  65. Yu C, Bi E (2015) Roles of functional groups of naproxen in its sorption to kaolinite. Chemosphere 138:335–339. https://doi.org/10.1016/j.chemosphere.2015.06.023

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Alexander Scheeline, University of Illinois at Urbana-Champaign, USA, for critical reading to improve this manuscript’s English.

Author information

Authors and Affiliations

Authors

Contributions

T.D.P.: conceptualization, investigation, methodology, data treatment, supervision, writing, reviewing, and editing; D.T.N.: investigation, analyze, data treatment, and writing; H.L.N.: analyze, data treatment, and writing; M.Q.N.: analyze, investigation, and data treatment; T.M.T.: analyze, investigation, and data treatment; M.V.N.: analyze and data treatment; N.T.L.: analyze, investigation, and data treatment; T.M.V.N.: analyze and data treatment; K.N.: material synthesis and analyze; T.T.: methodology, supervision, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tien Duc Pham or Toshiki Tsubota.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.D., Nguyen, D.T., Nguyen, H.L. et al. Adsorption characteristics of ciprofloxacin and naproxen from aqueous solution using bamboo biochar. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05092-x

Keywords

Navigation