Skip to main content
Log in

Torrefaction of municipal solid waste to enhanced hydrophobic solid fuel: parametric optimisation and optimised torrefied solid products characterisation, grindability, and pyrolysis behaviour

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Rapid population growth has led to more municipal solid waste (MSW), which can be turned into energy. But direct MSW utilisation generates tar in gasification, produces water and acid contents in pyrolysis bio-oil, and releases secondary pollutants during combustion. Torrefaction solves the issues associated with direct MSW utilisation. This work optimised torrefaction process parameters (T: 220–300°C and t: 10–50 min) for torrefied solid fuels (TSF) production using response surface methodology and studied the characteristics, grindability, and pyrolysis behaviour of the optimised TSF. Temperature and time influenced the TSF calorific value (CV) and mass yield (YS), with temperature effect more compared to time. The CV increased with torrefaction severity. 25.94 MJ/kg and 17.94 MJ/kg CV were obtained at T300-50 (300°C, 50 min) and T222-13 (222°C, 13 min), respectively. YS gave an opposite trend with 97.52% and 51.58% at T222-13 and T300-50, respectively. The optimum condition was achieved at T282-19 with 21.97 MJ/kg CV and 70.10% YS. T300-50 and T282-19 CV and carbon content increased, while O/C and H/C ratios reduced. The removal of the OH group hindered H bond formation, consequently improving MSW hydrophobicity. T300-50 and T282-19 pyrolysis kinetics activation energy decreased from 240.44 to 104.34 and 195.46 kJ/mol, respectively, confirming optimised TSF pyrolysis reactivity improvement. The Criado and Coats Redfern models showed that all the samples followed the second-order reaction mechanism. Torrefaction improved the thermal, reactivity, and grindability properties of MSW. These findings showed the potential of torrefaction to transform MSW into a renewable and sustainable energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used is presented in tables and figures within the article. The corresponding author will supply any additional or related information upon request.

References

  1. Ong HC, Chen WH, Singh Y, Gan YY, Chen CY, Show PL (2020) A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energ Convers Manage 209:112634. https://doi.org/10.1016/j.enconman.2020.112634

    Article  Google Scholar 

  2. Lu Z, Li X, Jian J, Yao S (2019) Flame combustion of single wet-torrefied wood particle: effects of pretreatment temperature and residence time. Fuel 250:160–167. https://doi.org/10.1016/j.fuel.2019.03.102

    Article  Google Scholar 

  3. Gong SH, Im HS, Um M, Lee HW, Lee JW (2019) Enhancement of waste biomass fuel properties by sequential leaching and wet torrefaction. Fuel 239:693–700. https://doi.org/10.1016/j.fuel.2018.11.069

    Article  Google Scholar 

  4. Chen W-H, Peng J, Bi TX (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev 44:847–866. https://doi.org/10.1016/j.rser.2014.12.039

    Article  Google Scholar 

  5. Wannapeera J, Worasuwannarak N (2015) Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields. J Anal Appl Pyrolysis 115:279–287. https://doi.org/10.1016/j.jaap.2015.08.007

    Article  Google Scholar 

  6. Zhang Y, Song K (2018) Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere. Energy 165:235–245. https://doi.org/10.1016/j.energy.2018.09.006

    Article  Google Scholar 

  7. Gonçalves da Silva C (2010) Renewable energies: choosing the best options. Energy 35(8):3179–3193. https://doi.org/10.1016/j.energy.2010.03.061

    Article  Google Scholar 

  8. Shahbaz M, Yusup S, Inayat A, Patrick DO, Pratama A (2016) Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash. Appl Energy 184:1306–1315. https://doi.org/10.1016/j.apenergy.2016.05.045

    Article  Google Scholar 

  9. Nazari L, Yuan Z, Ray MB, Xu CC (2017) Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: optimization of reaction parameters using response surface methodology. Appl Energy 203:1–10. https://doi.org/10.1016/j.apenergy.2017.06.009

    Article  Google Scholar 

  10. Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE, Al-Shannag M (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sust Energ Rev 67:295–314. https://doi.org/10.1016/j.rser.2016.09.035

    Article  Google Scholar 

  11. Duku MH, Gu S, Hagan EB (2011) A comprehensive review of biomass resources and biofuels potential in Ghana. Renew Sust Energ Rev 15(1):404–415. https://doi.org/10.1016/j.rser.2010.09.033

    Article  Google Scholar 

  12. Fazeli A, Bakhtvar F, Jahanshaloo L, Che Sidik NA, Bayat AE (2016) Malaysia's stand on municipal solid waste conversion to energy: a review. Renew Sust Energ Rev 58:1007–1016. https://doi.org/10.1016/j.rser.2015.12.270

    Article  Google Scholar 

  13. Kaza S, Yao L, Bhada-Tata P, van Woerden F (2018) What a aste 2.0: a global snapshot of solid waste management to 2050. In: Overview booklet. The Word Bank, Washington, DC

    Google Scholar 

  14. Sharma HB, Sarmah AK, Dubey B (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sust Energ Rev 123:109761. https://doi.org/10.1016/j.rser.2020.109761

    Article  Google Scholar 

  15. Tang YY, KHD T, Maharjan AK, Aziz AA, Bunrith S (2021) Malaysia moving towards a sustainability municipal waste management. Industrial Domestic Waste Manag 1(1):26–40. https://doi.org/10.53623/idwm.v1i1.51

    Article  Google Scholar 

  16. Gebreslassie MG, Gebreyesus HB, Gebretsadik MT, Bahta ST, Birkie SE (2019) Characterization of municipal solid waste’s potential for power generation at Mekelle City as a waste minimisation strategy. Int J Sustain Eng 13(1):68–75. https://doi.org/10.1080/19397038.2019.1645757

    Article  Google Scholar 

  17. Jasni AB, Chelliapan S, Din MFM, Arumugam N (2020) Treatment of landfill leachate using granular multi-stage anaerobic reactor: optimisation through response surface methodology. J Environ Treat Tech 8:567–572

    Google Scholar 

  18. Lin C, Zhang J, Zhao P, Wang Z, Yang M, Cui X et al (2020) Gasification of real MSW-derived hydrochar under various atmosphere and temperature. Thermochim Acta 683:178470. https://doi.org/10.1016/j.tca.2019.178470

    Article  Google Scholar 

  19. Ischia G, Fiori L, Gao L, Goldfarb JL (2021) Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production. J Clean Prod 289:125781. https://doi.org/10.1016/j.jclepro.2021.125781

    Article  Google Scholar 

  20. Abdul Samad NAF, Jamin NA, Saleh S (2017) Torrefaction of municipal solid waste in Malaysia. Enrgy Proced 138:313–318. https://doi.org/10.1016/j.egypro.2017.10.106

    Article  Google Scholar 

  21. Chen P, Xie Q, Addy M, Zhou W, Liu Y, Wang Y et al (2016) Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour Technol 215:163–162. https://doi.org/10.1016/j.biortech.2016.02.094

    Article  Google Scholar 

  22. Guo Z-g, Wang S-r, Zhu Y-y, Luo Z-y, K-f C (2009) Separation of acid compounds for refining biomass pyrolysis oil. J Fuel Chem Technol 37(1):49–52. https://doi.org/10.1016/S1872-5813(09)60010-4

    Article  Google Scholar 

  23. Yue X, Chen D, Luo J, Xin Q, Huang Z (2020) Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources. Appl Energy 268:114970. https://doi.org/10.1016/j.apenergy.2020.114970

    Article  Google Scholar 

  24. Guan G, Kaewpanha M, Hao X, Abudula A (2016) Catalytic steam reforming of biomass tar: prospects and challenges. Renew Sust Energ Rev 58:450–461. https://doi.org/10.1016/j.rser.2015.12.316

    Article  Google Scholar 

  25. Emami Taba L, Irfan MF, Wan Daud WAM, Chakrabarti MH (2012) The effect of temperature on various parameters in coal, biomass and co-gasification: a review. Renew Sust Energ Rev 16(8):5584–5596. https://doi.org/10.1016/j.rser.2012.06.015

    Article  Google Scholar 

  26. Silveira EA, Santanna Chaves B, Macedo L, Ghesti GF, RBW E, Cruz Lamas G et al (2023) A hybrid optimization approach towards energy recovery from torrefied waste blends. Renew Energ 212:151–165. https://doi.org/10.1016/j.renene.2023.05.053

    Article  Google Scholar 

  27. Thengane SK, Kung KS, Gomez-Barea A, Ghoniem AF (2022) Advances in biomass torrefaction: parameters, models, reactors, applications, deployment, and market. Prog Energy Combust Sci 93:101040. https://doi.org/10.1016/j.pecs.2022.101040

    Article  Google Scholar 

  28. Abdulyekeen KA, Umar AA, Patah MFA, Daud WMAW (2021) Torrefaction of biomass: production of enhanced solid biofuel from municipal solid waste and other types of biomass. Renew Sust Energ Rev 150:111436. https://doi.org/10.1016/j.rser.2021.111436

    Article  Google Scholar 

  29. Rago YP, Surroop D, Mohee R (2018) Torrefaction of textile waste for production of energy-dense biochar using mass loss as a synthetic indicator. J Environ Chem Eng 6(1):811–822. https://doi.org/10.1016/j.jece.2017.12.055

    Article  Google Scholar 

  30. Dhanavath KN, Bankupalli S, Bhargava SK, Parthasarathy R (2018) An experimental study to investigate the effect of torrefaction temperature on the kinetics of gas generation. J Environ Chem Eng 6(2):3332–3341. https://doi.org/10.1016/j.jece.2018.05.016

    Article  Google Scholar 

  31. Sarker TR, Nanda S, Meda V, Dalai AK (2022) Process optimisation and investigating the effects of torrefaction and pelletisation on steam gasification of canola residue. Fuel 323:124239. https://doi.org/10.1016/j.fuel.2022.124239

    Article  Google Scholar 

  32. Chen D, Cen K, Gan Z, Zhuang X, Ba Y (2022) Comparative study of electric-heating torrefaction and solar-driven torrefaction of biomass: characterization of property variation and energy usage with torrefaction severity. Appl Energy Combust Sci 9:100051. https://doi.org/10.1016/j.jaecs.2021.100051

    Article  Google Scholar 

  33. Saha N, Fillerup E, Thomas B, Pilgrim C, Causer T, Herren D et al (2022) Improving bamboo’s fuel and storage properties with a net energy export through torrefaction paired with catalytic oxidation. Chem Eng J 440:135750. https://doi.org/10.1016/j.cej.2022.135750

    Article  Google Scholar 

  34. Abdulyekeen KA, Daud WMAW, Patah MFA, Abnisa F (2022) Torrefaction of organic municipal solid waste to high calorific value solid fuel using batch reactor with helical screw induced rotation. Bioresour Technol 363:127974. https://doi.org/10.1016/j.biortech.2022.127974

    Article  Google Scholar 

  35. Abdullah I, Ahmad N, Hussain M, Ahmed A, Ahmed U, Park Y-K (2022) Conversion of biomass blends (walnut shell and pearl millet) for the production of solid biofuel via torrefaction under different conditions. Chemosphere 295:133894. https://doi.org/10.1016/j.chemosphere.2022.133894

    Article  Google Scholar 

  36. Chen C, Yang R, Wang X, Qu B, Zhang M, Ji G et al (2022) Effect of in-situ torrefaction and densification on the properties of pellets from rice husk and rice straw. Chemosphere 289:133009. https://doi.org/10.1016/j.chemosphere.2021.133009

    Article  Google Scholar 

  37. Niu Q, Ronsse F, Qi Z, Zhang D (2022) Fast torrefaction of large biomass particles by superheated steam: enhanced solid products for multipurpose production. Renew Energy 185:552–563. https://doi.org/10.1016/j.renene.2021.12.070

    Article  Google Scholar 

  38. Sarker TR, Azargohar R, Stobbs J, Karunakaran C, Meda V, Dalai AK (2022) Complementary effects of torrefaction and pelletization for the production of fuel pellets from agricultural residues: a comparative study. Ind Crop Prod 181:114740. https://doi.org/10.1016/j.indcrop.2022.114740

    Article  Google Scholar 

  39. Zhang L, Wang Z, Ma J, Kong W, Yuan P, Sun R et al (2022) Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction. Fuel 310:122477. https://doi.org/10.1016/j.fuel.2021.122477

    Article  Google Scholar 

  40. Chen WH, Lin BJ, Lin YY, Chu YS, Ubando AT, Show PL et al (2021) Progress in biomass torrefaction: principles, applications and challenges. Prog Energy Combust Sci 82:100887. https://doi.org/10.1016/j.pecs.2020.100887

    Article  Google Scholar 

  41. Sukiran MA, Wan Daud WMA, Abnisa F, Nasrin AB, Astimar AA, Loh SK (2021) Individual torrefaction parameter enhances characteristics of torrefied empty fruit bunches. Biomass Convers Biorefin 11(2):461–472. https://doi.org/10.1007/s13399-020-00804-z

    Article  Google Scholar 

  42. Singh RK, Chakraborty JP, Sarkar A (2020) Optimising the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterisation of solid, liquid and gaseous products. Renew Energy 155:677–690. https://doi.org/10.1016/j.renene.2020.03.184

    Article  Google Scholar 

  43. Singh RK, Sarkar A, Chakraborty JP (2020) Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM). Energy 198:117369. https://doi.org/10.1016/j.energy.2020.117369

    Article  Google Scholar 

  44. Singh S, Chakraborty JP, Mondal MK (2019) Optimisation of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel. Energy 186. https://doi.org/10.1016/j.energy.2019.115865

  45. Gan MJ, Lim WS, Ng HX, Ong MH, Gan S, Lee LY et al (2019) Enhancement of palm kernel shell fuel properties via wet torrefaction: response surface, optimisation, and combustion studies. Energ Fuel. https://doi.org/10.1021/acs.energyfuels.9b02229

  46. Lee JW, Kim YH, Lee SM, Lee HW (2012) Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresour Technol 116:471–476. https://doi.org/10.1016/j.biortech.2012.03.122

    Article  Google Scholar 

  47. Medic D, Darr M, Shah A, Potter B, Zimmerman J (2012) Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1):147–154. https://doi.org/10.1016/j.fuel.2011.07.019

    Article  Google Scholar 

  48. Buratti C, Barbanera M, Lascaro E, Cotana F (2018) Optimisation of torrefaction conditions of coffee industry residues using desirability function approach. Waste Manag 73:523–534. https://doi.org/10.1016/j.wasman.2017.04.012

    Article  Google Scholar 

  49. Jifara Daba B, Mekuria HS (2023) Torrefaction of corncob and khat stem biomass to enhance the energy content of the solid biomass and parametric optimisation. Bioresour Technol Rep 21:101381. https://doi.org/10.1016/j.biteb.2023.101381

    Article  Google Scholar 

  50. Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC (2013) Biomass torrefaction technology: techno-economic status and future prospects. Energy 62:196–214. https://doi.org/10.1016/j.energy.2013.09.035

    Article  Google Scholar 

  51. Qureshi KM, Abnisa F, Wan Daud WMA (2019) Novel helical screw-fluidised bed reactor for bio-oil production in slow-pyrolysis mode: a preliminary study. J Anal Appl Pyrolysis 142:104605. https://doi.org/10.1016/j.jaap.2019.04.021

    Article  Google Scholar 

  52. Qureshi KM, Kay Lup AN, Khan S, Abnisa F, Wan Daud WMA (2021) Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: effect of particle size, pyrolysis time and vapor residence time. Clean Eng Technol 4:100174. https://doi.org/10.1016/j.clet.2021.100174

    Article  Google Scholar 

  53. Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW (2021) Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor. Korean J Chem Eng 38(9):1797–1809. https://doi.org/10.1007/s11814-021-0842-0

    Article  Google Scholar 

  54. Lee K-T, Cheng C-L, Lee D-S, Chen W-H, Vo D-VN, Ding L et al (2021) Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel. Energy:122467. https://doi.org/10.1016/j.energy.2021.122467

  55. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246–1253. https://doi.org/10.1016/j.biortech.2010.08.028

    Article  Google Scholar 

  56. Gil MV, García R, Pevida C, Rubiera F (2015) Grindability and combustion behavior of coal and torrefied biomass blends. Bioresour Technol 191:205–212. https://doi.org/10.1016/j.biortech.2015.04.117

    Article  Google Scholar 

  57. Sharma HB, Panigrahi S, Dubey BK (2019) Hydrothermal carbonisation of yard waste for solid bio-fuel production: study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Waste Manag 91:108–119. https://doi.org/10.1016/j.wasman.2019.04.056

    Article  Google Scholar 

  58. Ma J, Zhang Z, Wang Z, Kong W, Feng S, Shen B et al (2022) Integration of torrefaction and in-situ pelletisation for biodried products derived from municipal organic wastes: the influences of temperature on fuel properties and combustion behaviours. Fuel 313:122845. https://doi.org/10.1016/j.fuel.2021.122845

    Article  Google Scholar 

  59. Ma J, Feng S, Zhang Z, Wang Z, Kong W, Yuan P et al (2022) Pyrolysis characteristics of biodried products derived from municipal organic wastes: synergistic effect of bulking agents and modification of biodegradation. Environ Res 206:112300. https://doi.org/10.1016/j.envres.2021.112300

    Article  Google Scholar 

  60. Khairy M, Amer M, Ibrahim M, Ookawara S, Sekiguchi H, Elwardany A (2023) The influence of torrefaction on the biochar characteristics produced from sesame stalks and bean husk. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03822-9

  61. Criado JM (1978) Kinetic analysis of DTG data from master curves. Thermochim Acta 24(1):186–189. https://doi.org/10.1016/0040-6031(78)85151-X

    Article  Google Scholar 

  62. Chen WH, Kuo PC (2011) Torrefaction and co-torrefaction characterisation of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36(2):803–811. https://doi.org/10.1016/j.energy.2010.12.036

    Article  Google Scholar 

  63. da Silva CMS, Vital BR, AdCO C, EVS C, de Magalhães MA, Trugilho PF (2017) Structural and compositional changes in eucalyptus wood chips subjected to dry torrefaction. Ind Crops Prod 109:598–602. https://doi.org/10.1016/j.indcrop.2017.09.010

    Article  Google Scholar 

  64. Chen D, Gao A, Ma Z, Fei D, Chang Y, Shen C (2018) In-depth study of rice husk torrefaction: characterisation of solid, liquid and gaseous products, oxygen migration and energy yield. Bioresour Technol 253:148–153. https://doi.org/10.1016/j.biortech.2018.01.009

    Article  Google Scholar 

  65. Barbanera M, Muguerza IF (2020) Effect of the temperature on the spent coffee grounds torrefaction process in a continuous pilot-scale reactor. Fuel 262:116493. https://doi.org/10.1016/j.fuel.2019.116493

    Article  Google Scholar 

  66. Chen Y-C, Chen W-H, Lin B-J, Chang J-S, Ong HC (2016) Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl Energy 181:110–119. https://doi.org/10.1016/j.apenergy.2016.07.130

    Article  Google Scholar 

  67. Pathomrotsakun J, Nakason K, Kraithong W, Khemthong P, Panyapinyopol B, Pavasant P (2020) Fuel properties of biochar from torrefaction of ground coffee residue: effect of process temperature, time, and sweeping gas. Biomass Convers Biorefin 10(3):743–753. https://doi.org/10.1007/s13399-020-00632-1

    Article  Google Scholar 

  68. Azargohar R, Nanda S, Kang K, Bond T, Karunakaran C, Dalai AK et al (2019) Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets. Renew Energ 132:296–307. https://doi.org/10.1016/j.renene.2018.08.003

    Article  Google Scholar 

  69. Ong HC, Yu KL, Chen W-H, Pillejera MK, Bi X, Tran K-Q et al (2021) Variation of lignocellulosic biomass structure from torrefaction: a critical review. Renew Sust Energ Rev 152:111698. https://doi.org/10.1016/j.rser.2021.111698

    Article  Google Scholar 

  70. Sarker TR, Azargohar R, Dalai AK, Meda V (2021) Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction. Energ Rep 7:6338–6353. https://doi.org/10.1016/j.egyr.2021.09.068

    Article  Google Scholar 

  71. Ly HV, Kwon B, Kim J, Oh C, Hwang HT, Lee JS et al (2022) Effects of torrefaction on product distribution and quality of bio-oil from food waste pyrolysis in N2 and CO2. Waste Manag 141:16–26. https://doi.org/10.1016/j.wasman.2022.01.013

    Article  Google Scholar 

  72. Yan J, Oyedeji O, Leal JH, Donohoe BS, Semelsberger TA, Li C et al (2020) Characterising variability in lignocellulosic biomass: a review. ACS Sustain Chem Eng 8:8059–8085. https://doi.org/10.1021/acssuschemeng.9b06263

    Article  Google Scholar 

  73. Xin S, Mi T, Liu X, Huang F (2018) Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues. Energy 152:586–593. https://doi.org/10.1016/j.energy.2018.03.104

    Article  Google Scholar 

  74. Granados D, Ruiz R, Vega L, Chejne F (2017) Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 139:818–827. https://doi.org/10.1016/j.energy.2017.08.013

    Article  Google Scholar 

  75. Parvez AM, Afzal MT (2020) Gasification performance of torrefied Timothy hay and spruce wood chars in a CO2 environment. Can J Chem Eng. https://doi.org/10.1002/cjce.23729

  76. Vincent SS, Mahinpey N, Aqsha A (2014) Mass transfer studies during CO2 gasification of torrefied and pyrolyzed chars. Energy 67:319–327. https://doi.org/10.1016/j.energy.2013.12.034

    Article  Google Scholar 

  77. Zinchik S, Xu Z, Kolapkar SS, Bar-Ziv E, McDonald AG (2020) Properties of torrefied U.S. waste blends. Waste Manag 104:130–138. https://doi.org/10.1016/j.wasman.2020.01.009

    Article  Google Scholar 

  78. Tapasvi D, Khalil R, Skreiberg Ø, Tran K-Q, Grønli M (2012) Torrefaction of Norwegian birch and spruce: an experimental study using macro-TGA. Energy Fuel 26(8):5232–5240. https://doi.org/10.1021/ef300993q

    Article  Google Scholar 

  79. Matali S, Rahman NA, Idris SS, Yaacob N (2017) Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal. AIP Conference Proceedings

    Book  Google Scholar 

  80. Gucho EM, Shahzad K, Bramer EA, Akhtar NA, Brem G (2015) Experimental study on dry torrefaction of beech wood and miscanthus. Energies 8(5):3903–3923. https://doi.org/10.3390/en8053903

    Article  Google Scholar 

  81. Gouws SM, Carrier M, Bunt JR, Neomagus HWJP (2021) Co-pyrolysis of coal and raw/torrefied biomass: a review on chemistry, kinetics and implementation. Renew Sust Energ Rev 135:110189. https://doi.org/10.1016/j.rser.2020.110189

    Article  Google Scholar 

  82. Setkit N, Li X, Yao H, Worasuwannarak N (2021) Torrefaction behavior of hot-pressed pellets prepared from leucaena wood. Bioresour Technol 321:124502. https://doi.org/10.1016/j.biortech.2020.124502

    Article  Google Scholar 

  83. Tian X, Dai L, Wang Y, Zeng Z, Zhang S, Jiang L et al (2020) Influence of torrefaction pretreatment on corncobs: a study on fundamental characteristics, thermal behavior, and kinetic. Bioresour Technol 297. https://doi.org/10.1016/j.biortech.2019.122490

  84. He Q, Ding L, Gong Y, Li W, Wei J, Yu G (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 280:104–111. https://doi.org/10.1016/j.biortech.2019.01.138

    Article  Google Scholar 

  85. Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J (2013) Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosyst Eng 116(4):420–426. https://doi.org/10.1016/j.biosystemseng.2013.10.003

    Article  Google Scholar 

  86. Li M, Wang H, Huang Z, Yuan X, Tan M, Jiang L et al (2020) Comparison of atmospheric pressure and gas-pressurized torrefaction of municipal sewage sludge: properties of solid products. Energ Convers Manage 213:112793. https://doi.org/10.1016/j.enconman.2020.112793

    Article  Google Scholar 

  87. Li H, Wang S, Yuan X, Xi Y, Huang Z, Tan M et al (2018) The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization. Bioresour Technol 249:574–581. https://doi.org/10.1016/j.biortech.2017.10.046

    Article  Google Scholar 

Download references

Funding

This work was supported by the Petroleum Technology Development Fund (PTDF) and the University of Malaya (Grant number: IIRG003A-2020FNW).

Author information

Authors and Affiliations

Authors

Contributions

Kabir Abogunde Abdulyekeen: conceptualisation; data curation; methodology; investigation; formal analysis; validation; visualisation; writing—original draft; visualisation; writing—reviewing and editing.

Wan Mohd Ashri Wan Daud: conceptualisation; supervision; funding acquisition; project administration; writing—reviewing and editing; validation.

Muhamad Fazly Abdul Patah: supervision; resources; writing—reviewing and editing.

Faisal Abnisa: validation; writing—reviewing and editing.

Corresponding authors

Correspondence to Kabir Abogunde Abdulyekeen, Wan Mohd Ashri Wan Daud or Muhamad Fazly Abdul Patah.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulyekeen, K.A., Daud, W.M.A.W., Patah, M.F.A. et al. Torrefaction of municipal solid waste to enhanced hydrophobic solid fuel: parametric optimisation and optimised torrefied solid products characterisation, grindability, and pyrolysis behaviour. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04953-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04953-9

Keywords

Navigation