Skip to main content
Log in

Effect of Phenolic-rich Forest and Agri-food Wastes on Yield, Antioxidant, and Antimicrobial Activities of Ganoderma lucidum

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Ganoderma lucidum is an important medicinal mushroom with outstanding pharmaceutical properties, including anticancer, antioxidant, anti-inflammatory, and immunomodulatory activities due to its bioactive compounds. Such compounds could be suitably enhanced in mushrooms via an appropriate selection of growing substrates. This study aimed to evaluate the effect of phenolic-rich forest and agricultural wastes on the yield, antioxidant, and antimicrobial activities of G. lucidum. Oak sawdust (OS) (control) was used as a basal substrate to which phenolic-rich wastes, i.e., grape pomace (GP) and green walnut hulls (GWH), were mixed in percentages of 12.5, 25, and 50% each. Spawn running period (SRP), time to primordia initiation (DPI), time to first harvest (DFH), yield, and biological efficiency (BE) of G. lucidum were determined, and total phenolic content and antioxidant activity of the fruitbody were measured. The antimicrobial activity was assessed by examining extracts’ effect on the growth of three Gram (+) and four Gram (−) bacteria and one yeast. Substrates supplemented with 12.5% GP significantly increased the yield and BE of G. lucidum (112.16 g/kg and 33%, respectively). Moreover, 12.5 and 25% GWH-supplemented substrates and 25% GP-supplemented ones resulted in a significant increase in the antioxidant capacity of the fruit bodies. The mushrooms cultivated on GP- and GWH-supplemented substrates exhibited higher antimicrobial activity when compared to those of OS. Our findings revealed that the incorporation of GP in the growing substrate of G. lucidum has the potential to improve its yield, antioxidant, and antimicrobial activities. Therefore, this agricultural waste can be successfully used as a good supplement in the production of G. lucidum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Venturella G, Ferraro V, Cirlincione F, Gargano ML (2021) Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci 22:634. https://doi.org/10.3390/2Fijms22020634

    Article  Google Scholar 

  2. Kumar K, Mehra R, Guiné RP, Lima MJ, Kumar N, Kaushik R, Ahmed N, Yadav AN, Kumar H (2021) Edible mushrooms: a comprehensive review on bioactive compounds with health benefits and processing aspects. Foods 10:2996. https://doi.org/10.3390/foods10122996

    Article  Google Scholar 

  3. Adeyi AO, Awosanya SA, Adeyi OE, James AS, Adenipekun CO (2021) Ganoderma lucidum ethanol extract abrogates metabolic syndrome in rats: in vivo evaluation of hypoglycemic, hypolipidemic, hypotensive and antioxidant properties. Obes Med 22:100320. https://doi.org/10.1016/j.obmed.2021.100320

    Article  Google Scholar 

  4. Kumar SP, AS GI, Priyadharsini JV (2020) Targeting NM23-H1-mediated inhibition of tumour metastasis in viral hepatitis with bioactive compounds from Ganoderma lucidum: a computational study. Indian J Pharm Sci 82:300–305. https://doi.org/10.36468/pharmaceutical-sciences.650

    Article  Google Scholar 

  5. Meneses ME, Martínez-Carrera D, Torres N, Sánchez-Tapia M, Aguilar-López M, Morales P, Sobal M, Bernabé T, Escudero H, Granados-Portillo O, Tovar AR (2016) Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PloS One 11:e0159631. https://doi.org/10.1371/journal.pone.0159631

    Article  Google Scholar 

  6. Kao C, Jesuthasan AC, Bishop KS, Glucina MP, Ferguson LR (2013) Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Funct. Foods Health Dis 3:48–65. https://doi.org/10.31989/ffhd.v3i2.65

    Article  Google Scholar 

  7. Khoo SC, Ma NL, Peng WX, Ng KK, Goh MS, Chen HL, Tan SH, Lee CH, Luang-in V, Sonne C (2022) Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum. Chemosphere 286:131477. https://doi.org/10.1016/j.chemosphere.2021.131477

    Article  Google Scholar 

  8. Atila F (2020) Comparative study on the mycelial growth and yield of Ganoderma lucidum (Curt.: Fr.) Karst. on different lignocellulosic wastes. Acta Ecol Sin 40:153–157. https://doi.org/10.1016/j.chnaes.2018.11.007

    Article  Google Scholar 

  9. Rashad FM, El Kattan MH, Fathy HM, Abd El-Fattah DA, El Tohamy M, Farahat AA (2019) Recycling of agro-wastes for Ganoderma lucidum mushroom production and Ganoderma post mushroom substrate as soil amendment. Waste Manag 88:147–159. https://doi.org/10.1016/j.wasman.2019.03.040

    Article  Google Scholar 

  10. Bernabé-González T, Cayetano-Catarino M, Bernabé-Villanueva G, Romero-Flores A, Ángel-Ríos MD, Pérez-Salgado J (2015) Cultivation of Ganoderma lucidum on agricultural by-products in Mexico. Micol Aplicada Int 27:25–30

    Google Scholar 

  11. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17(3):512–531. https://doi.org/10.1111/1541-4337.12330

    Article  Google Scholar 

  12. Beres C, Costa GN, Cabezudo I, da Silva-James NK, Teles AS, Cruz AP, Mellinger-Silva C, Tonon RV, Cabral LMC, Freitas SP (2017) Towards integral utilization of grape pomace from winemaking process: a review. Waste Manag 68:581–594. https://doi.org/10.1016/j.wasman.2017.07.017

    Article  Google Scholar 

  13. Yilmaz S, Akça Y, Saçlik S (2017) Green husk and inshell biomass production capabilities of six walnut cultivars. Agric Food 5:389–397

    Google Scholar 

  14. Barekat S, Nasirpour A, Keramat J, Dinari M, Meziane-Kaci M, Paris C, Desobry S (2022) Phytochemical composition, antimicrobial, anticancer properties, and antioxidant potential of green husk from several walnut varieties (Juglans regia L.). Antioxidants 12:52. https://doi.org/10.3390/antiox12010052

    Article  Google Scholar 

  15. Silva A, Silva V, Igrejas G, Aires A, Falco V, Valentão P, Poeta P (2022) Phenolic compounds classification and their distribution in winemaking by-products. Euro Food Res Technol 249:207–239. https://doi.org/10.1007/s00217-022-04163-z

    Article  Google Scholar 

  16. Mahari WAW, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, Van Le Q, Show PL, Chen WH, Lam SS (2020) A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater 400:123156. https://doi.org/10.1016/j.jhazmat.2020.123156

    Article  Google Scholar 

  17. Diamantopoulou P, Gardeli C, Papanikolaou S (2021) Impact of olive mill wastewaters on the physiological behavior of a wild-type new Ganoderma resinaceum isolate. Environ Sci Pollut Res 28:20570–20585. https://doi.org/10.1007/s11356-020-11835-4

    Article  Google Scholar 

  18. Koutrotsios G, Patsou M, Mitsou EK, Bekiaris G, Kotsou M, Tarantilis PA, Pletsa V, Kyriacou A, Zervakis GI (2019) Valorization of olive by-products as substrates for the cultivation of Ganoderma lucidum and Pleurotus ostreatus mushrooms with enhanced functional and prebiotic properties. Catalysts 89:537. https://doi.org/10.3390/catal9060537

    Article  Google Scholar 

  19. Lu H, Lou H, Hu J, Liu Z, Chen Q (2020) Macrofungi: a review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 19:2333–2356. https://doi.org/10.1111/1541-4337.12602

    Article  Google Scholar 

  20. Kurd-Anjaraki S, Ramezan D, Ramezani S, Samzadeh-Kermani A, Pirnia M, Shahi BY (2022) Potential of waste reduction of agro-biomasses through Reishi medicinal mushroom (Ganoderma lucidum) production using different substrates and techniques. Acta Ecol Sin 42:90–101. https://doi.org/10.1016/j.chnaes.2021.04.010

    Article  Google Scholar 

  21. Peksen A, Yakupoglu G (2009) Tea waste as a supplement for the cultivation of Ganoderma lucidum. World J Microbiol Biotechnol 25:611–618. https://doi.org/10.1007/s11274-008-9931-z

    Article  Google Scholar 

  22. Nedeljkovic BB, Ćilerdžić J, Zmijanjac D, Marković M, Džopalić T, Vasilijić S, Vučević D (2022) Immunomodulatory effects of extract of lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) basidiocarps cultivated on alternative substrate. Int J Med Mushrooms 24:45–59. https://doi.org/10.1615/IntJMedMushrooms.2022044452

    Article  Google Scholar 

  23. Association of Official Analytical Chemists (AOAC) (2021) Official methods of analysis of AOAC International [www Document], 21st edn https://www.aoac.org/aoac_prod_i mis/AOAC/Publications/Official_Methods_of_Analysis/AOAC_Member/Pubs/OMA/ AOAC_Official_Methods_of_Analysis.aspx.2019

    Google Scholar 

  24. Vansoest PJ, Robertson JB, Lewis BA (1991) Method for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2

    Article  Google Scholar 

  25. Zadrazil F, Brunnert H (1982) Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulverlentium Nov. and Dichotimus squalens (Karsl) Reid. Eur J Appl Microbiol Biotechnol 16:45–51. https://doi.org/10.1007/BF01008242

    Article  Google Scholar 

  26. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  27. Atila F (2017) Evaluation of suitability of various agro-wastes for productivity of Pleurotus djamor, Pleurotus citrinopileatus and Pleurotus eryngii mushrooms. J Exp Agric Int 17:1–11. https://doi.org/10.9734/JEAI/2017/36346

    Article  Google Scholar 

  28. Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36:2090–2097. https://doi.org/10.1248/cpb.36.2090

    Article  Google Scholar 

  29. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  30. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981. https://doi.org/10.1021/jf048741x

    Article  Google Scholar 

  31. Rubab S, Bahadur S, Hanif U, Durrani AI, Sadiqa A, Shafique S, Urooj Z, Nizamani MM, Iqbal S (2021) Phytochemical and antimicrobial investigation of methanolic extract/fraction of Ocimum basilicum L. Biocatal Agric Biotechnol 31:101894. https://doi.org/10.1016/j.bcab.2020.101894

    Article  Google Scholar 

  32. Gurung OK, Budathoki U, Parajuli G (2012) Effect of different substrates on the production of Ganoderma lucidum (Curt.: Fr.) Karst. Nature 10:191–198. https://doi.org/10.3126/on.v10i1.7781

    Article  Google Scholar 

  33. Mir-Cerdà A, Nunez O, Granados M, Sentellas S, Saurina J (2023) An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. TrAC Trends Anal Chem 161:116994. https://doi.org/10.1016/j.trac.2023.116994

    Article  Google Scholar 

  34. Roy S, Jahan MAA, Das KK, Munshi SK, Noor R (2015) Artificial cultivation of Ganoderma lucidum (Reishi medicinal mushroom) using different sawdusts as substrates. Am J Biosci 3:178–182. https://doi.org/10.11648/j.ajbio.20150305.13

    Article  Google Scholar 

  35. Papadaki A, Kachrimanidou V, Papanikolaou S, Philippoussis A, Diamantopoulou P (2019) Upgrading grape pomace through Pleurotus spp. cultivation for the production of enzymes and fruiting bodies. Microorganisms 7(7):207. https://doi.org/10.3390/microorganisms7070207

    Article  Google Scholar 

  36. Atíla F (2022) Using phenol-rich agro-wastes as substrates for the cultivation of Hypsizygus ulmarius mushroom with enhanced functional and nutritional potential. Braz Arch Biol Technol 65. https://doi.org/10.1590/1678-4324-2022210669

  37. Ruiz-Rodriguez A, Soler-Rivas C, Polonia WHJ (2010) Effect of olive mill waste (OMW) supplementation to Oyster mushrooms substrates on the cultivation parameters and fruiting bodies quality. Int. Biodeter Biodegr 64:638–645. https://doi.org/10.1016/j.ibiod.2010.07.003

    Article  Google Scholar 

  38. Kalmıs E, Azbar N, Yıldız H, Kalyoncu F (2008) Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw. Bioresour Technol 99:164–169. https://doi.org/10.1016/j.biortech.2006.11.042

    Article  Google Scholar 

  39. Kalmış E, Sargın S (2004) Cultivation of two Pleurotus species on wheat straw substrates containing olive mill waste water. Int Biodeter Biodegr 53:43–47. https://doi.org/10.1016/j.ibiod.2003.08.002

    Article  Google Scholar 

  40. Ćilerdžić J, Vukojević J, Stajić M, Stanojković T, Glamočlija J (2014) Biological activity of Ganoderma lucidum basidiocarps cultivated on alternative and commercial substrate. J Ethnopharmacol 155:312–319. https://doi.org/10.1016/j.jep.2014.05.036

    Article  Google Scholar 

  41. Heleno SA, Barros L, Martins A, Queiroz MJR, Santos-Buelga C, Ferreira IC (2012) Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Res Int 46:135–140. https://doi.org/10.1016/j.foodres.2011.12.009

    Article  Google Scholar 

  42. Chang KA, Kow HN, Tan TE, Tan KL, Chew LY, Neo YP, Sabaratnam V (2021) Effect of domestic cooking methods on total phenolic content, antioxidant activity and sensory characteristics of Hericium erinaceus. Int J Food Sci Tech 56:5639–5646. https://doi.org/10.1111/ijfs.15158

    Article  Google Scholar 

  43. Rahimah SB, Djunaedi DD, Soeroto AY, Bisri T (2019) The phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Maced J Med Sci 7:2404. https://doi.org/10.3889/2Foamjms.2019.741

    Article  Google Scholar 

  44. Zhang N, Chen H, Zhang Y, Ma L, Xu X (2013) Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods. J Sci Food Agric. 93:3107–3113. https://doi.org/10.1002/jsfa.6151

    Article  Google Scholar 

  45. Koutrotsios G, Larou E, Mountzouris KC, Zervakis GI (2016) Detoxification of olive mill wastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Applied Biochem Biotechnol 180:195–209. https://doi.org/10.1007/s12010-016-2093-9

    Article  Google Scholar 

  46. Lin Q, Long L, Wu L, Zhang F, Wu S, Zhang W, Sun X (2017) Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food and Agric 97:3476–3480. https://doi.org/10.1002/jsfa.8097

    Article  Google Scholar 

  47. Mau JL, Lin HC, Chen CC (2002) Antioxidant properties of several medicinal mushrooms. J Agric Food Chem 50:6072–6077. https://doi.org/10.1021/jf0201273

    Article  Google Scholar 

  48. Veligodska AK, Fedotov OV (2015) Screening of content and dynamic of accumulation of polyphenols in some basidiomycetes species. Ukrainian J Ecol 5:42–54. https://doi.org/10.7905/bbmspu.v5i3.984

    Article  Google Scholar 

  49. Shah P, Modi HA, Shukla MD, Lahiri SK (2014) Preliminary phytochemical analysis and antibacterial activity of Ganoderma lucidum collected from Dang District of Gujarat, India. Int J Curr Microbiol App Sci 3:246–255

    Google Scholar 

  50. Karwa AS, Rai MK (2012) Naturally occurring medicinal mushroom-derived antimicrobials: a case-study using Lingzhi or Reishi Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (higher Basidiomycetes). Int J Med Mush 14:481–490. https://doi.org/10.1615/IntJMedMushr.v14.i5.60

    Article  Google Scholar 

  51. Stampar F, Solar A, Hudina M, Veberic R, Colaric M (2006) Traditional walnut liqueur–cocktail of phenolics. Food Chem. 95:627–631. https://doi.org/10.1016/j.foodchem.2005.01.035

    Article  Google Scholar 

  52. Yıldırım HK, Akçay YD, Güvenç U, Altındişli A, Sözmen EY (2005) Antioxidant activities of organic grape, pomace, juice, must, wine and their correlation with phenolic content. Int J Food Sci Technol 40:133–142. https://doi.org/10.1111/j.1365-2621.2004.00921.x

    Article  Google Scholar 

  53. da Paz MF, Breyer CA, Longhi RF, Oviedo MSVP (2012) Determining the basic composition and total phenolic compounds of Pleurotus sajor-caju cultivated in three different substrates by solid state bioprocess. J Biotechnol Biodivers 3:11–14. https://doi.org/10.20873/jbb.uft.cemaf.v3n2.paz

    Article  Google Scholar 

  54. Barros L, Calhelha RC, Vaz JA, Ferreira IC, Baptista P, Estevinho LM (2007) Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Euro Food Res Technol 225:151–156. https://doi.org/10.1007/s00217-006-0394-x

    Article  Google Scholar 

  55. Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81:399–408. https://doi.org/10.1007/s10725-016-0216-5

    Article  Google Scholar 

  56. Mkhize SS, Cedric Simelane MB, Mongalo IN, Pooe OJ (2022) The effect of supplementing mushroom growing substrates on the bioactive compounds, antimicrobial activity, and antioxidant activity of Pleurotus ostreatus. Biochem Res Int 2022:10. https://doi.org/10.1155/2022/9436614

    Article  Google Scholar 

  57. Gashaw G, Fassil A, Redi F (2020) Evaluation of the antibacterial activity of Pleurotus spp. cultivated on different agricultural wastes in Chiro, Ethiopia. Int J Microbio Article 2020:9. https://doi.org/10.1155/2020/9312489

    Article  Google Scholar 

  58. Mwita LN, Mshandete AM, Lyantagaye SL (2010) Improved antimicrobial activity of the Tanzanian edible mushroom Coprinus cinereus (Schaeff) Gray by chicken manure supplemented solid sisal wastes substrates. J Yeast Fungal Res 1:201–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.A. and H.Ö; methodology, F.A., H.Ö., and E.B.; software, F.A.; formal analysis, F.A., H.Ö., and A.K.; investigation, F.A., H.Ö., and E.B.; data curation, F.A., H.Ö., E.B., and A.K.; writing—original draft preparation, F.A.; writing—review and editing, F.A., H.Ö., S.A.F, and P.K.; visualization, F.A., S.A.F., P.K.; supervision, F.A. and H.Ö. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Funda Atila.

Ethics declarations

Ethical approval

Ethical approval is not required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atila, F., Ogutcu, H., Bilginoglu, E. et al. Effect of Phenolic-rich Forest and Agri-food Wastes on Yield, Antioxidant, and Antimicrobial Activities of Ganoderma lucidum. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04708-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04708-6

Keywords

Navigation